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ABSTRACT 

The chemical structure of flavonoids greatly influences the rate of degradation by 

human gut microflora and their overall bioavailability. To investigate which soy isoflavone 

structures were needed for rapid gut microbial degradation, 100 p,mol of daidzein, genistein 

and glycitein were incubated in fecal fermentation mixtures consisting of brain heart infusion 

media (BHI) and fresh feces m Wfro from 12 human subjects for 24 hours. Genistein, which 

possesses a hydroxyl group in the 5 position, degraded most rapidly in all subjects with an 

average k = 0.43 ± 0.44 h~i (p = 0.018). Glycitein and daidzein degradation rates were not 

different from each other with an average k = 0.30 ± 0.21 h"' and k = 0.16 ± 0.17 h~i (p = 

0.074). Glycitein, the metabolism of which has been less characterized, was metabolized to 

dihydroglycitein, dihydro-6,7,4' -trihydroxyflavone, 5'-OMe-O-desmethylangolensin, 6-

OMe-equol and daidzein. 

To further determine the relationship between other flavonoids with hydroxyl groups 

in the 5 position and gut microbial degradation, 80 |iM of 14 flavonoids, flavone, apigenin, 

chrysin, naringenin, kaempferol, genistein, daidzein, daidzin, puerarin, 7,4'-

dihydroxyflavone, 6,4'-dihydroxyflavone, 5,4'-dihydroxyflavone, 5,3'-dihydroxyflavone and 

4'-hydroxyflavone, were fermented in fecal fermentation mixtures from 11 human subjects. 

The degradation rates of 5,7,4'-trihydroxyl-flavonoids, apigenin, genistein, naringenin and 

kaempferol, were significantly faster with an average k = 0.38 ± 0.11 h~\ compared to 

flavonoids with other structural motifs with an average k = 0.08 ± 0.02 h"^ (p<0.0001). 

The bioavailability of flavonoids that are rapidly degraded by the gut microflora may 

be significantly reduced compared to flavonoids that are slowly degraded. The bioavailability 

of rapidly degraded flavonoids m v;fro, genistein, naringenin, hesperetin, quercetin, and a 
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slowly degraded flavonoid, daidzein, was analyzed. Five men and five women were fed 

soymilk containing 28 mg genistein and 16 mg daidzein, grapefruit juice containing 422 mg 

of naringenin and 8 mg hesperetin, and sautéed onions containing 115 mg quercetin with a 2 

week washout period in between feedings. Rapidly degraded flavonoids from m Wfro fecal 

fermentation systems in 33 subjects, included the 5,7,4'-trihydroxyflavonoids, genistein, 

apigenin, naringenin, kaempferol, quercetin and luteolin, with an average k = 0.46 ± 0.10 h~\ 

and the methoxylated flavonoids, glycitein and hesperetin with an average k = 0.24 ± 0.21 

h~\ compared to slowly degraded flavonoids with an average k = 0.07 ± 0.02 h~i (p < 

0.0001). The bioavailability of the rapidly degraded flavonoids, genistein, naringenin, 

quercetin and hesperetin with an average k = 5.8 ± 1.9 % were significantly lower than 

daidzein with an average k = 42.6 ± 15.9 % (p = 0.02) expressed as the amount of flavonoid 

excreted in urine as a percentage of ingested dose. Subjects with low genistein degrader 

phenotypes (average k = 0.11 ± 0.07 h~\ n=4) based on average linkage cluster analysis, 

experienced a higher genistein bioavailability (11.5 ± 8.0 %) compared to the lower genistein 

bioavailability (3.6 ± 1.9 %, p = 0.007) experienced by subjects with high genistein degrader 

phenotypes (average k = 1.28 ± 0.45 h~\ n=3). 

The data from the m Wfro fecal fermentation studies reveal that the chemical structure 

of flavonoids greatly influences the gut microbial degradation rate. Flavonoids with 5,7,4'-

trihydroxyl-flavonoid structures were rapidly degraded by the human intestinal microflora, 

which in turn, resulted in lesser apparent absorption and excretion in urine over 24 h. 

Therefore, the chemical structure of flavonoids is a strong determinant of the human 

bioavailability of flavonoids. 
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GENERAL INTRODUCTION 

Introduction 

Flavonoids are polyphenolic compounds that are widely distributed in plants and in 

the human food supply. Flavonoids are synthesized in plants from the amino acid 

phenylalanine, and function as pollinator attractors, plant growth regulators, nitrogen fixating 

bacteria activators and ultraviolet (UV) filters. Fruits, vegetables and herbs are particularly 

rich sources of flavonoids where these compounds contribute to their color and flavor. Over 

5000 flavonoids have been identified to date, and are divided into subclasses including 

flavones, isoflavones, flavonols and flavonones (Harbome, 1986). 

The estimated daily intake of flavonoids in humans can reach up to 1 g. 

Epidemiological studies have suggested possible links between diets rich in fruits and 

vegetables and reduced risk of cancer and cardiovascular disease. The antioxidant and 

estrogenic activity of flavonoids may be responsible for these positive correlations. However, 

some flavonoids have been reported to possess some toxic properties such as pro-oxidant 

activity and adverse flavonoid-drug interactions, which warrant further investigation. 

The bioavailability of flavonoids is critical in understanding their biological and 

health effects in humans. The extent of absorption and gut microbial metabolism may 

significantly alter the bioavailability and activity of flavonoids at their target site. Therefore, 

determining how these factors influence human bioavailability is the overall objective of my 

research. 

The two major sites of flavonoid metabolism are the large intestine, where gut 

microorganisms participate in glycosidase activity and anaerobic reductive reactions, and the 

liver where phase II conjugation and phase I oxidative reactions occur. The extent to which 



www.manaraa.com

4 

gut microorganisms metabolize or degrade the flavonoids determines how much of the parent 

compound is absorbed and ultimately, the bioavailability of flavonoids. Each flavonoid 

possesses unique structural features that divide them into their respective subclasses. In 

addition, each flavonoid in each subclass possesses different substitutions on each ring 

structure such as hydroxyl, methoxyl or glycosidic groups. One of the objectives of my 

research was to determine how different chemical structures of flavonoids affect the rate of 

degradation by the gut microflora of humans. 

The bioavailability of flavonoids is a significant factor in the determination of an 

appropriate dose for a desired health effect. If the chemical structure of flavonoids strongly 

dictates their rate of degradation by human gut microflora, then the flavonoid chemical 

structure plays a significant role in their bioavailability. Another objective of my research 

was, to determine by conducting human feeding studies, how different flavonoid chemical 

structures affect bioavailability m Wvo. 
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Dissertation Organization 

This thesis dissertation consists of a literature review and three papers. The first paper 

is titled 'Metabolism of glycitein (7,4'-dihydroxy-6-methoxyisoflavone) by human gut 

microflora,' which describes the kinetics of glycitein degradation m Wfro compared to the 

other two soy isoflavones, genistein and daidzein, and the glycitein metabolites produced by 

microbial degradation in humans. This paper will be submitted to the Journal of Agricultural 

and Food Chemistry. The second paper, titled 'Human gut microbial degradation of 

flavonoids: structure - function relationships,' examines how different chemical structures of 

flavonoids affect the rate of degradation m vifro by the gut microflora in humans. This paper 

has been accepted by the Journal of Agricultural and Food Chemistry in March 2005. The 

third paper is titled 'Gut microbial degradation of flavonoids and their correlation to human 

bioavailability'. This paper reports how different flavonoid chemical structures affect human 

absorption and bioavailability m v;vo. This paper will be submitted to the Journal of 

Nutrition. A general conclusion follows these three papers. 
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LITERATURE REVIEW 

A. Chemistry and Sources of Flavonoids 

Flavonoids are polyphenolic compounds that are derived from benzo-y-pyrone or 

chromone. All flavonoids possess a common C-15 structure consisting of 2 aromatic rings, 

identified as A and B, joined together by a 3 carbon atom chain, that form an oxygenated 

heterocyclic C ring (Croft, 1998, Figure 1A). Although flavonoids are structurally similar, 

they can be divided into 6 main groups with shared characteristic structural features such as 

flavones, flavonols, flavanones, isoflavones, flavanols, anthocyanidins and 

proanthocyanidins (Figure 1). Each group differs from each other by variations in the 

heterocyclic C ring. Additionally, flavonoids within each subclass may be substituted on the 

A and B rings with O and C-linked sugars, hydroxyl, methyl, methoxyl, acyl, prenyl, 

sulphate and glucuronide groups (Cook and Samman, 1996). 

Flavones are characterized by a 2,3 double bond, a carbonyl group in the 4 position of 

the C ring and the B ring attached to the 2 position of the C ring (Figure IB). Flavones are 

less common than the other flavonoid subgroups in fruits and vegetables. Parsley and celery 

are the two most commonly consumed sources of flavones, which contain apigenin (5,7,4'-

trihydroxyflavone) and luteolin (5,7,3',4'-tetrahydroxyflavone, Table 1). Some cereals 

contain flavone with C-linked sugars and the skin of citrus fruits contains polymethoxylated 

flavones (Manthey and Grohman, 2001, Kawaii et al, 2000). 

Flavanones are similar to flavones but do not possess the 2,3 double bond in the C 

ring (Figure 1C). Flavanones are found in tomatoes and in high concentrations in citrus fruits 

(Kawaii et al, 1999, Table 1). Examples of commonly consumed flavanones are naringenin 

(5,7,4'-trihydroxyflavanone) found in grapefruit juice and hesperetin (5,7,3 '-trihydroxy-4'-



www.manaraa.com

7 

methoxyflavanone) found in orange juice. Flavanones are usually glycosylated at position 7 

of the A ring with disaccharides such as rutinose or neohesperidose (Kawaii et al, 1999a, 

Kawaii et al, 199b). These flavanone O-sugar bonds are able to resist hydrolysis during heat 

processing even at pasteurization temperatures (Gil-Izquierdo et al, 2002). Flavanone 

concentrations range from 15 - 600 mg/L in orange and grapefruit juice (Tomàs-Barberàn 

and Clifford, 2000). However, the pulp of citrus fruits are rich in flavanones, therefore, 

consuming the whole fruit consisting of the juice and pulp, can result in a flavanone dose of 

up to 5 times the amount found in the juice alone (Tomâs-Barberân and Clifford, 2000). 

Flavonols are the most commonly found flavonoids in foods. Flavonols are 

structurally similar to flavones, except they have an additional hydroxyl group in the 3 

position of the C ring (Figure ID). Examples of common flavonols are quercetin (3,5,7,3',4'-

pentahydroxyflavone or 5,7,3',4'-tetrahydroxyflavonol) and kaempferol (3,5,7,4'-

tetrahydroxyflavone or 5,7,4'-trihydroxyflavonol, Table 1). Flavonol concentrations in foods 

range from 15 mg/kg - 1.2 g/kg. The richest sources of flavonols are onions, broccoli, kale, 

leeks, red wine and tea (Hertog et al, 1992, Hertog et al, 1993a, Hertog et al, 1993b). 

Flavonols are found in O-glycosylated form with glucose or rhamnose (Aheme et al, 2002). 

Other sugar moieties also include galactose, arabinose, glucuronic acid and xylose. 

Isoflavones are similar to flavones except that the B ring is attached to the 3 position 

of the C ring (Figure IE). Isoflavones are usually hydroxylated in the 7 and 4' positions. 

Because of these features, they are structurally similar to estradiol and are able to bind to 

estrogen receptors (Kuiper et al, 1998). Therefore, isoflavones possess weak hormonal 

properties and are classified as phytoestrogens or plant estrogens. Soybeans and soy food 

products are the main sources of isoflavones such as genistein (5,7,4' -trihydroxyisoflavone), 
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daidzein (7,4'-dihydroxyisoflavone) and glycitein (7,4'-dihydroxy-6-methoxyisflavone, 

Table 1) but isoflavones can also be found in red and white clover, chickpeas and alfalfa. The 

isoflavone concentration of soybeans can range from 1 - 3 mg/g (Wang et al, 1994). 

Isoflavones can be found in both aglucon and P-O-glucosylated form. In soy, isoflavones are 

also found as acetyl and malonyl-glucosides. The malonyl glucosides are very heat sensitive 

and are quickly hydro!yzed to glucosides during minimal heat processing (Eisen et al, 2003, 

Xu et al, 2002, Grun et al, 2001). Fermentation results in the hydrolysis of isoflavone 

glucosides to isoflavone aglucons, which are very resistant to heat (Song et al, 1998). 

Fermentation is used in the manufacture of soy products such as miso and tempeh. 

Flavanols, also referred to as catechins, may exist in monomer form or as polymers, 

referred to as proanthocyanidins (Scalbert and Williamson, 2000). Flavanols are structurally 

similar to flavonols except they do not possess the 2,3 double bond or the carbonyl group in 

the 4 position of the C ring (Figure 1G). Flavanols are not glycosylated in foods, which is in 

contrast to other flavonoid subgroups. The richest sources of flavanols are green tea, 

chocolate and apricots (Table 1). Green tea infusions may contain up to 200 mg/cup of 

flavanols, while flavanol concentrations in apricots may reach up to 250 mg/kg fresh weight 

(Hara et al, 1995, Lee et al, 1995). Examples of flavanols in fruit are (+)-catechin and (-)-

epicatechin. Gallocatechin, (-)-epigallocatechin and (-)-epigallocatechin gallate are found in 

grapes, leguminous plants and tea (Yilmaz et al, 2004). Proanthocyanidins may be dimers, 

oligomers or polymers of flavanols which are linked together at the C-4 position of one 

flavanol to the C-8 position of another flavanol (Figure 1H). 

Anthocyanidins are structurally similar to flavanols, however, anthocyanidins possess 

a positive charge on the oxygen of the C ring (flavylium cation), a double bond between the 
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charged oxygen and C-2, and between C3-C4 of the C ring (Havsteen, 2002, Figure IF). 

Anthocyanidins are water-soluble pigments found in the vacuoles of epidermal tissues of 

plants and flowers. These compounds are responsible for the coloration of flowers and fruit 

depending on the pH. Anthocyanidins are found in glycosylated form because they are highly 

unstable as aglucons. Between pH 3 and 6, anthocyanidins are rapidly hydrated to colorless 

carbinol pseudobases. Glycosylation at position 3 of the C ring suppresses this hydration so 

that a higher pH (4 - 5) is needed for hydration. Additional biochemical reactions in the 

vacuoles help to suppress hydration and keep the flower coloration. Also, formation of 

complexes between the flavylium cation and other flavonoids called copigmentation, helps to 

prevent hydration (Havsteen, 2002). 
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A C 

5 " 4 
A. Flavonoid backbone structure and numbering system 

B. Flavone C. Flavanone 

D. Fiavonol E. Isoflavone 

F. Anthocyanidin G Flavan-3-ol 

rOH 

H. Proanthocyariidin 

Figure 1. Structures of flavonoid subclasses 
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Table 1. Sources of Common Flavonoids" 

Flavonoid Subclass Common Flavonoids Mqjor Food Sources 

Flavone apigenin, luteolin parsley, celery 

Flavanone naringenin, hesperetin citrus 

Flavonol quercetin, kaempferol onions, tea, broccoli, apples, red wine 

Isoflavone genistein, daidzein soybeans 

Flavan-3-ol catechin, epicatechin apples, tea 

Anthocyanidin cyanidin cherries, grapes, cocoa powder 

Proanthocyanidin procyanidin C2 red wine, blueberries, strawberries 

information taken from USDA flavonoid database 

B. Function of Flavonoids 

Flavonoids are a large family of structurally diverse polyphenols compounds. Many 

flavonoids are pigments, which contribute to the color of plants (Winkel-Shirley, 2001, 

Havsteen 2002). Flavonoids are found in all green plant cells, and due to their color, attract 

pollinators such as birds and insects, which help in seed dispersion (Harbome, 1986). 

Flavonoids function as plant growth regulators which are associated with auxin 

stimulation. Flavonoids prevent the transport of auxins such as indoyl acetic acid (IAA) out 

of the plant cell. This prevention allows the accumulation of IAA, which leads to gene 

expression and longitudinal growth of the plant cell (Stenlid, 1976, Jacobs et al, 1988). 

Flavonoids play a significant role in the nitrogen metabolism of nitrogen-fixating 

plants by inducing root nodulation. Exudates containing flavonoids are released from 

leguminous plants that are in need of nitrogenous substances (ammonia and amino acids) into 
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the soil (Srivastava et al, 1999). The flavonoids enter bacterial cells, e.g. 

strains, which contain nitrogen fixation and nodulation-inducing genes (Perret et al, 1999). 

The bacteria are taken up into the plant root nodules by chemotaxis where they release 

enzymes that are vital for nitrogen fixation such as nitrogenase reductase, coenzyme FeMe-

co, and nitrogenase (Mortenson et al, 1979). 

Convincing evidence has suggested that flavonoids provide protection of arial plant 

parts against plant damage by ultraviolet (UV) radiation (Murphy, 1997, Ormrod et al, 1995, 

Reuber et al, 1996, Liu et al, 1995, Gitz et al, 1998). UV-B radiation (280-315 nm) is one of 

the three bands of UV radiation, which possesses the lowest wavelength and highest energy. 

Flavonoids are able to act as UV filters and provide UV-B resistance because they absorb in 

the 280-315 nm region, protecting the photosynthetic tissues from damage. Most of the 

experimental evidence supporting the role of flavonoids in UV-B protection has been derived 

from using plant mutants, in which the synthesis of flavonoids are eliminated or greatly 

reduced. Ormrod et al, 1995 has shown that mutants of Arabw/opsi,? fAa/wna, which lack 

epidermal flavonoids compared to its wild type counterpart, were very sensitive to UV-B 

radiation. Reuber et al, 1996 has shown that mutants of ffordewm vw/garg contain 7% of the 

flavonoids that are present in the wild type. Photosynthesis was significantly decreased in 

the mutant plants, where as the wild type plants photosynthesized normally and also 

increased their flavonoid production. Flavonoid subclasses that are particularly strong UV 

filters and UV-B protectors are flavone or flavonol glycosides with hydroxycinnamyl 

acylation linked through sugars. These flavonoid structures absorb most strongly in the 280-

320 nm region (Harbome and Williams, 2000). 
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C. Biosynthesis of Flavonoids 

The flavonoid biosynthesis pathway is conserved over a wide variety of plants. Even 

mosses are able to carry out the initial steps of flavonoid biosynthesis (Stafford, 1991). The 

diversity of flavonoids that are found in nature however, depends on certain reactions carried 

out by different plant species. The biosynthetic pathway has almost been completely 

elucidated with many of the structural and regulatory genes cloned from several plants 

including Anfirr/iMWfM mq/wf, Pefwma and f/wz/wz, Zaz maya and 

tobacco (Holton and Comisch, 1995). 

The biosynthesis of flavonoids is illustrated in Figure 2. The first reactions of the 

flavonoid biosynthesis pathway are called the phenylpropanoid pathway. The 

phenylpropanoid pathway begins with the amino acid phenylalanine, which is synthesized 

from the shikimate biosynthesis pathway. Phenylalanine is the primary substrate for the 

synthesis of flavonoids. Phenylalanine-ammonia lyase (PAL) is the key enzyme of the 

phenylpropanoid pathway. PAL converts phenylalanine into cinnamic acid and is 

hypothesized as being the limiting step in this pathway (Creasy et al, 1974). Supporting data 

by Lister et al, 1996 has shown that the activity of PAL was proportional to the total 

flavonoid concentration in apples. Cinnamic acid is converted to p-coumaric acid by 

cinnamic acid 4-hydroxylase then converted to 4-coumaryl-CoA by 4-coumaryl-CoA ligase. 

The first committed step in the flavonoid biosynthesis pathway is catalyzed by 

chalcone synthase (CHS). This enzyme condenses 4-coumaryl-CoA with 3 molecules of 

malonyl-CoA to form chalcones such as isoliquiritigenin (trihydroxychalcone) and 

naringenin chalcone (tetrahydroxychalcone) (Tanaka et al, 1998, Holton and Comisch,1995, 

Forkmann and Heller, 1999). Studies have shown that suppression or down regulation of the 
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chalcone synthase genes causes a blockage of the flavonoid pathway. As a result, the flower 

color is modified or white, as a consequence of the absence of flavonoids (Napoli et al, 1999, 

Deroles et al, 1998). Chalcone isomerase rapidly transforms the chalcones into the first 

flavonoids of the pathway, liquiritigenin and naringenin respectively which are both of the 

flavanone subgroup (Joung et al, 2003, Holton and Comisch, 1995). In the absence of 

chalcone isomerase, naringenin chalcone still spontaneously isomerizes into naringenin, but 

at a slower rate (Holton and Comisch, 1995). 

Several pathways may be taken from the formation of the first flavonones. Firstly, 

naringenin and liquiritigenin can be converted to genistein and daidzein, respectively, which 

are of the isoflavone subclass. This reaction is catalyzed by isoflavone synthase which is 

responsible for the 2-3 migration of the B ring of naringenin and liquiritigenin (Yu et al, 

2000). These isoflavones may be further modified by enzymes such as isoflavone O-

methyltransferase, to form biochanin A and formononetin, and P450 hydroxylase, isoflavone 

reductase, vestitone reductase and dehydratase, to form other isoflavone compounds. 

Secondly, naringenin may be converted to another flavanone called eriodictyol by the 

enzyme flavonoid 3'-hydroxylase. Third, the flavanones may be converted to flavones by 

flavone synthase, and lastly, both naringenin and eriodictyol can be converted to 

dihydroflavonols such as dihydrokaempferol, dihydroquercetin and dihydromyhcetin by 

flavanone 3-hydroxylase (Britsch et al, 1993). 

Dihydroflavonols can be transformed into flavonols such as quercetin, kaempferol 

and myricetin by flavonol synthase (Holton et al, 1993, Nielsen et al, 2002, Forkmann and 

Heller, 1999), or dihydroflavonols may be transformed into flavan-3,4,-diols 

(leucoanthocyanidins) by dihydroflavonol 4-reductase (Kristiansen and Rohde, 1991). 
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Flavan-3-ols and anthocyanidins are formed from flavan-3,4,-diols by enzymes including 

leucoanthocyanidin reductase and leucoanthocyanidin deoxygenase, respectively (Martin et 

al, 199], Bradley et al, 1998, Tanaka et al, 1998). 

Flavonoids and intermediates in the flavonoid biosynthesis pathway may be modified 

by glucosylation, acylation, alkylation, methylation or hydroxylation. Some modifications 

such as sulfation, C-glycosylation and prenylation, are restricted to certain flavonoid 

subgroups (Heller and Forkman, 1994). Flavonoid methylation occurs with S-adenosyl-L-

methionine catalyzed by methyl transferases (Wengenmayer et al, 1974). Flavonoid 

glycosylation is catalyzed by UDPG-flavonoid-glucosyltransferases. Although glycosylation 

may occur at any hydroxyl group on the flavonoid skeleton, glycosylation occurs usually at 

position 7 of the A ring, position 3 of the C ring and position 4' of the B ring. Flavonoids 

with a free hydroxyl group at the 3 position of the C ring are not found in nature because they 

are unstable under physiological conditions (Forkmann and Heller, 1999). Glycosylation by 

UDPG-flavonoid-3-O-glucosyltransferase is an especially important step in the biosynthesis 

of anthocyanidins so that they may be stabilized and accumulate as water soluble pigments in 

vacuoles of plant cells (Schijlen et al, 2004). 

Flavonoid biosynthetic genes are regulated at the transcriptional level and are 

responsible for the levels of flavonoids in different plant species (Ranish and Hahn, 1996). 

These regulatory genes have been identified in many plants and are dependent on tissue type 

and signals such as hormones, microbes and UV radiation (Holton and Comisch, 1995, Vom 

Endt et al, 2002). 
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Figure 2: Major pathways of flavonoid biosynthesis in plants. Enzyme names are abbreviated as 
follows:cinnamate-4-hydroxylase (C4H), chalcone isomerase (CHI), chalcone reductase (CHR), chalcone 
synthase (CHS), 4-coumaroyl:CoA-ligase (4CL), dihydroflavonol 4-reductase (DFR), flavanone 3-hydroxylase 
(F3H), flavone synthase (FS), flavonoid 3' hydroxylase (F3'H), isoflavone O-methyltransferase (IOMT), 
isoflavone synthase (IPS), leucoanthocyanidin dioxygenase (LDOX), leucoanthocyanidin reductase (LCR), O-
methyltransferase (OMT), phenylalanine ammonia-lyase (PAL), UDPG-flavonoid glucosyl transferase (UFGT). 
Adapted from Winkel-Shirley et al, 2001 
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D. Dietary Intake 

For many years, the data of Kuhnau et al, 1976 has served as a reference for flavonoid 

dietary intake. They calculated that the flavonoid dietary intake was around 1 g flavonoid 

glucosides per day, which is equivalent to around 650 mg flavonoid aglucons. They reported 

that this 1 g/day value consisted of 45% biflavones, 20% catechins, 17% anthocyanidins and 

16% flavones, flavanones and flavonols (Kuhnau, 1976). These intake values, however, were 

based on the analysis of very few foods. Since then, other studies have made more progress 

in making accurate estimates of the intake levels of various flavonoid subclasses. 

Luteolin and apigenin, found in celery and parsley, respectively, are the main 

flavones found in the human diet. The intake level of these flavones was determined to be 

less than 2 mg/day in the U.S, Denmark, Japan, Holland and Finland (Sampson et al, 2002, 

Arai et al, 2000, Dragsted et al, 1997, Kneht et al, 2002, Hertog et al, 1993). The intake 

levels of flavonols, such as quercetin, myricetin, kaempferol which have been more 

extensively studied, were around 15 - 30 mg day in the U.S, Japan, Holland and Denmark 

(Sampson et al, 2002, Arai et al, 2000, Dragsted et al, 1997, Hertog et al, 1993). The lowest 

flavone and flavonol intake level was found in Finland of less than 4 mg/day (Kneht et al, 

2002). Hertog and colleagues determined that the intake of flavones and flavonols in the 

Netherlands was around 23 mg/day of which quercetin contributed 16 mg/day (Hertog et al, 

1993). The major sources of quercetin in this population were from tea (48%), onions (29%) 

and apples (7%). 

Citrus fruits are the major sources of flavonones (mainly hesperetin and naringenin), 

however, intake levels were estimated only in Denmark and Finland. Denmark estimated an 

intake range of 7 - 14 mg/day and Finland estimated an average intake of 20 mg/day 
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(Dragsted et al, 1997, Kneht et al, 2002). Parts of the U.S. such as Florida and California 

produce large quantités of citrus so it is surprising that flavanone intake levels were not 

estimated in the U.S. 

The maximum intake of isoflavones from soybeans and soy products in Asian 

countries can reach around 100 mg/day with an average intake range of 25 - 50 mg/day. In 

contrast, American and European countries consume less than 1 mg/day because these 

populations consume substantially lesser amounts of soy compared to Asian countries 

(Beecher, 2003). For example, in Japan, the average intake of isoflavones is around 47 

mg/day compared to the U.S and Holland, with an intake of less than 1 mg/day (Boker et al, 

2002, Aral et al, 2000, De Kleijn et al, 2001, Wu et al, 2002). Interestingly, it seems as 

though cultural habits determine the intake levels of flavonoids especially certain flavonoid 

subgroups because Asians that have immigrated to the U.S. still consume substantial 

amounts, around 12 mg isoflavones/day isoflavones (Wu et al, 2002). 

If we compare the flavonoid intake levels of the studies described above, with the 

intake levels of Kuhnau data, it is clear that the Kuhnau estimate was too high. Based on their 

data, flavonol and flavone intake levels in the U.S. appears to be around 100 mg/day 

(Kuhnau et al, 1976). However all current data have reported significantly lower values 

around 23 mg/day (Hertog et al, 1993a). 

E. Biological and Health Effects 

a. Estrogenic Activity 

The estrogenic effects of flavonoids were discovered from cases of infertility in 

Australian sheep and cattle that grazed on red clover (Schutt, 1976 and Verdeal, 1979). Red 

clover contains high concentrations (up to 5% dry weight) of the isoflavones, biochanin A 
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(5,7-dihydroxy-4' -methoxyisoflavone) and formononetin (7-hydroxy-4' -methoxyisoflavone), 

which are methylated derivatives of genistein and daidzein, respectively (Saloniemi et al, 

1995). Sonnenbichler and Pohl in 1980, determined the structure of the complex flavonoid 

silybin (Figure 3) after an observation that sheep fed fermented clover became sexually 

aroused. Silybin was described as a flavonolignan and was the first of its kind to be 

discovered. Structural elucidation revealed that the hydroxyl groups of silybin were 

positioned similar to that of estradiol and other steroid hormones (Sonnenbichler and Pohl, 

1980). 

Additionally, structure similarities with estradiol are observed for genistein and 

daidzein, which are liberated as a result of demethylation by rumen microbial metabolism 

(Lundh, 1995). The 7 and 4'-hydroxyls of flavonoids in the isoflavone subclass correspond to 

the 3 and 17P-hydroxyls of estrogens (Figure 4). Isoflavones have been shown to compete 

with 17(3-estradiol for binding to the estrogen receptor (Fang et al, 2001, Kuiper et al, 1998). 

Because of this structural similarity, isoflavones have been classified as phytoestrogens. 

OH O 

Figure 3. Structure of silybin, a flavonolignan 
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Figure 4. Structure similarities between 17(3 -estradiol and isoflavones 

Estrogens play a vital role in the growth, differentiation and function of tissues in the 

reproductive system including the vagina, ovaries, mammary glands, uterus, testes and 

prostate (Peterson et al, 1998). Estrogens play a role in bone maintainance, the cardiovascular 

system and the central nervous system (Turner et al, 1994, Farhat et al, 1996 and lafrati et al, 

1997), perhaps because all these tissues possess estrogen receptors which exist in 2 subtypes, 

ERa and ERfS. These 2 sub-types differ in their C-terminal ligand-binding domain and in the 

N-terminal transactivation domain (Kuiper et al, 1998). When estrogens bind to the estrogen 

receptor, the estrogen receptor undergoes a conformational change which activates 

transcription of target genes (Jensen 1995, Beato et al, 1995). Estrogens, phytoestrogens and 
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synthetic estrogens may have different relative affinities for ERa and ER|3, but like 17|3-

estradiol, flavonoids have a preferential affinity for ERp (Kuiper et al, 1998). 

Forty different flavonoids were analyzed for estrogenic activity using a transient 

transfection assay in HeLa cells and competition binding assay with 17P-estradiol for 

estrogen receptor expressed in COS-7 cells (Miksicek, 1995). Of the 40 flavonoids, 12 were 

able to significantly stimulate transcriptional activity, including the isoflavones daidzein, 

genistein and biochanin A, the flavanones naringenin and 7,4'-dihydroxyflavanone, the 

flavonol, kaempferol, the flavones apigenin, 6,4' -dihydroxyflavone and 5,4'-

dihydroxyflavone and the chalcones phloretin, isoliquiritigenin and 4,4 ' -dihydroxychalcone. 

In the competition binding assay, these compounds were able to compete with 17|S-estradiol 

for binding to the estrogen receptor but only in molar concentrations 1000-10,000 fold higher 

than 17|)-estradiol (Miksicek, 1995). 

Structure activity relationship (SAR) analysis revealed that the 4'-hydroxyl was 

extremely important and any deviation from this pattern reduced estrogenic activity as in the 

lowered activity of 6,3 ' -dihydroxyflavone compared to 6,4' -dihydroxyflavone. There was 

some flexibility in the hydroxylation pattern of the A ring but the 7 position was most 

favorable. Hydroxylation patterns that created catechols were a detriment to estrogenic 

activity such as 7,8-dihydroxyflavone or 7,8,4'-trihydroxyflavone (Miksicek, 1995). //% vzvo, 

the estrogenic activity of biochanin A, which is methoxylated in the 4' position, may be 

explained by the conversion of biochanin A to genistein, but the authors had no explanation, 

however, for the estrogenic activity of biochanin A m Wfro (Miksicek, 1995). It has been 

shown that MCF-7 breast tumor cells can convert biochanin A to genistein (Peterson et al, 
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1996), therefore HeLa cells, which were used in the Miksicek, 1995 studies, may also be able 

to make this conversion. 

Kuiper et al, 1998, using similar assays as in Miksicek et al, 1995, using human 293 

embryonal kidney cells, found that genistein, apigenin, naringenin and kaempferol were 

stronger competitors with 17|)-estradiol for binding to ER(3 compared to ERo. They found 

that genistein activated transcriptional activity at relatively low concentrations (1-10 nM) 

while the other flavonoids did so at concentrations of around 1000 nM. Genistein and 

daidzein concentrations in plasma may reach up to 1000 nM after a meal rich in soybeans or 

soy protein extracts according to Kurzer et al, 1997. These data suggest that these isoflavones 

may be able to exert estrogenic activity at levels found in the human diet. The ranking of the 

flavonoids' affinity to ER|3 was 17(l-estradiol > genistein = coumestrol > daidzein > 

biochanin A = apigenin = kaempferol = naringenin > phloretin = formononetin = chrysin 

(Kuiper et al, 1998). From the studies by Miksicek et al, 1995 and Kuiper et al, 1998, it is 

clear that isoflavones are in general more estrogenic than the other flavonoid structures. 

However, the latter study did not attempt to determine which structures were important for 

estrogenic activity (Kuiper et al, 1998). 

Fang et al, 2001 suggested 5 main criteria for estrogenic activity, a good H-bond 

donor that imitates the 3-OH of 17P-estradiol, an H-bond donor that imitates the 17^-OH of 

17P-estradiol and the 0-0 distance between the 3-OH and 17&-OH, a steric hydrophobic 

center, hydrophobicity and ring structure. This research group studied the affinity of 202 

natural and synthetic chemicals, for the androgen receptor. Of all flavonoids studied, the 

isoflavone genistein was the most estrogenic because its ring structure and hydroxylation 

pattern met all of the above criteria. The 7,4'-hydroxylation pattern of genistein and most of 
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the isoflavones, agreed with criteria 1 and 2, which play an important role in binding to the 

ER receptor. The 7,4'-hydroxylation pattern of the other flavonoid subgroups do not fit these 

criteria. The 5-OH of genistein forms an intramolecular bond with the 4-carbonyl group, 

which increases the electron withdrawal capacity of the carbonyl and hydrophobicity. This 

met criterias 3 and 4. Finally the rigid ring structure of genistein is similar to the ring 

structure of 17|3-estradiol, which is important for fitting into the binding site of the estrogen 

receptor. 

In addition to possessing estrogenic activity, flavonoids have been found to have anti

estrogenic activity. Han et al, 2002 reported that flavonoids possessed anti-estrogenic activity 

M vzfro. They observed that genistein, daidzein, luteolin and quercetin at 10 nM suppressed 

the proliferation of MCF-7 cells caused by industrial chemicals. Genistein caused the greatest 

suppression (Han et al, 2002). These observations are significant because the flavonoid levels 

analyzed are physiologically relevant, and have obvious implications for anti-cancer activity. 

However, they did not analyze the glucuronide forms of these flavonoids, which are the 

circulating forms in blood of most flavonoids. 

Besides binding to the two estrogen receptor subtypes (ERa and ERp) (Kuiper et al, 

1998), flavonoids may compete with endogenous substrates for active sites of estrogen 

biosynthesizing and metabolizing enzymes, such as aromatase (Jeong et al, 1999, Kellis et al, 

1984) and 17P-hydroxysteroid oxidoreductase, type 1 (Makelâ et al, 1995, Mâkelâ et al, 

1998). Aromatase is a cytochrome P450 (CYP19) enzyme, which converts C19 androgens 

such as androstenedione or testosterone, to aromatic C18 estrogenic steroids such as estrone 

and estradiol, respectively (Dowsett et al, 1993). Estrogenic steroids play an important role 

in the development of breast cancer cells, therefore the inhibition of aromatase and 17^-
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hydroxysteroid oxidoreductase, type 1 lowers 17|3-estradiol concentrations in target cells, 

which may decreases the risk of breast cancer (Mâkelà et al, 1994). 

Flavonoids were shown to be potent aromatase and 17 ̂ -hydroxysteroid 

oxidoreductase inhibitors in human placental microsomes by the radioactive measurement of 

estrone and estradiol produced from radiolabelled (l,2,6,7-^H)-4-androstene-3,17-dione m 

Wfro. The IC% values for the flavonoids ranged from 0.2 - 48.0 p,M for aromatase and 0.2 -

15.0 for 17^-hydroxysteroid oxidoreductase. Structure-activity relationship studies 

revealed that 7-hydroxyflavone and apigenin were the most effective aromatase and 17/?-

hydroxysteroid dehydrogenase inhibitors, respectively and that a hydroxyl group in position 

7 on the A ring of the flavonoid structure was essential for anti-17/?-hydroxysteroid 

dehydrogenase activity. For anti-aromatase activity, flavonoids with 7-methoxy or 8-

hydroxyl groups on the A ring were most effective (Le Bail et al, 1998). In a similar study, 

flavonoids such as naringenin, luteolin, chrysin, 7-hydroxyflavone and apigenin were shown 

to inhibit the formation of radiolabelled 17p-estradiol from radiolabelled androstenedione 

with IC50 values ranging from 0.2 - 0.5 ^M in human choriocarcinoma JEG-3 cells and in 

human embryonic kidney cells HEK 293 transfected with human aromatase gene. However, 

after oral administration of these flavonoids to immature rats at 50 mg/kg body weight, none 

of the flavonoids induced uterine growth or reduced estrogen- or androgen-induced uterine 

growth (Saarinen et al, 2001). These results were interesting because the flavonoids were 

given at doses that greatly exceed those that are found in the human diet, yet the flavonoids 

were unable to inhibit aromatase m Ww. These results are most likely due to poor 

bioavailability of these compounds which will be discussed in the 'Metabolism and 

Bioavailability' section of this dissertation. 
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The estrogenic activity of isoflavones has been implicated in the prevention and 

suppression of osteoporosis (Burke, 2000). Osteoporosis is a disease characterized by low 

bone mass and deterioration of bone tissue (Melton et al, 2004). The mechanism of this effect 

is thought to be hormonal, by binding to ERp, which is present in bone (Burke, 2000). 

Genistein and daidzein dosed orally at 10 pg/g body weight per day suppressed 

ovarectomized-induced bone loss in adult Wistar rats (Picherit et al, 2000). In a 24 week 

double blind study with 69 perimenopausal women, a dose of 80.4 mg/d isoflavone aglucons 

given as isoflavone - rich soy protein isolate, increased bone mineral density (BMD) by 5.6 

% and bone mineral count (BMC) by 10.1 % compared to the control group fed whey 

protein, and the group fed 4.4 mg/d isoflavone aglucons as isoflavone - poor soy protein 

isolate (Alekel et al, 2000). BMD and BMC decreased by 1.3 % and 1.7 % respectively in the 

control group (Alekel et al, 2000). The dose of 80.4 mg isoflavone aglucons, which induced 

the favorable effect in the Alekel et al, 2000 study was an appropriately selected dose, 

because a diet rich in soy-containing foods, such as 2 or 3 servings of soy foods, can be 

achieved. More studies are needed in area of suppression of osteoporosis in men and late 

postmenopausal women. 

b. Antioxidant Effects 

Several investigators have demonstrated the antioxidant effects of flavonoids in 

biological systems. It is believed that the antioxidant properties, in conjunction with their 

weak estrogenic activity of flavonoids, may be responsible for their biological role in 

decreasing the risk of cardiovascular disease, cancer and chronic inflammation. Many 

reactive species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

are formed from physiological processes in the body, which contribute to aging, mutagenesis, 
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carcinogenesis, DNA damage, and cardiovascular disease (Croft, 1998). The human body 

possesses intrinsic antioxidant defense mechanisms that are usually adequate in suppressing 

the production of free radicals (Halliwell, 1994). It is in situations of oxidative stress, where 

excess free radicals are formed, and intrinsic antioxidant defense mechanisms are not enough 

to suppress their formation. For example, the superoxide ion 0% is formed from partial 

reduction of dioxygen (Havsteen et al, 2002). The hydroperoxide radical HO] is formed 

from protonation of the superoxide anion which leads to the formation of H2O0. H2O2 may 

react with nitrogen oxide to form nitrous peroxy acid which is a highly effective oxidant. X-

or y- radiation produces hydroxyl radicals from water which can attack other radicals 

resulting in nitrous acid, peroxynitrite, superoxide, NO and H2O2 (Haenen et al, 1997). If an 

excess amount of free radicals are formed, a chain reaction proceeds that leads to the attack 

of essential unsaturated lipids and the formation of lipid peroxidation products. Nucleic acid 

bases and other vital cellular compounds may also be damaged. Ultimately, excess 

production of these highly reactive species result in mutations, disruption of metabolic 

processes and cancer (Havsteen, 2002). 

Flavonoids act as free radical scavengers by breaking the free radical chain reaction. 

Flavonoids react with free radicals to form a highly stable flavonoid radical (Croft, 1998). 

This is important because if the flavonoid radical was not stable, it would propagate and 

attack other molecules causing the formation of more free radicals. Therefore, the formation 

of flavonoid radicals successfully terminates the chain reaction and prevents injury to cellular 

components. Other antioxidant defense mechanisms that have been demonstrated for 
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flavonoids include activating antioxidant enzymes (Havsteen et al, 2002), reducing a-

tocopherol radicals (Chen et al, 1990) and inhibiting oxidases (Park et al, 1998). 

Flavonoids may also exert antioxidant activity by chelating metal ions. Tissue injury 

may release copper or iron, which may participate in Fenton-type reactions that produce 

reactive hydroxyl radicals. Flavonoids react with the metal ions in order to prevent these 

reactions. This ability of flavonoids to react with metal ions is actually a pro-oxidant effect. 

Cao et al, 1997 has demonstrated both antioxidant and pro-oxidant activities of flavonoids wz 

Wfro and found that each activity is highly dependent on the number of hydroxyl 

substitutions. The prooxidant activity of flavonoids will be discussed further in the flavonoid 

toxicity section of this review. 

Several authors have reported on the flavonoid structural requirements for antioxidant 

activity (Rice-Evans et al, 1996, Bors et al, 1990, Cao et al, 1997, Van Acker et al, 1996, 

Chen et al, 1996). As a general conclusion from these studies, structural requirements for 

antioxidant activity are an ortho-catechol structure on the B ring, a 2,3 double bond together 

with a 4-carbonyl group and a hydroxyl group in the 3 position. The ortho-catechol structure 

on the B ring is by far the most important determinant of antioxidant activity especially free 

radical scavenging (Bors et al, 1990). These hydroxyl groups are important for electron 

delocalizalion and donates a hydrogen and an electron to peroxyl peroxynitrite and hydroxyl 

radicals, which stabilize them and at the same time, form a stable flavonoid radical. For 

example, luteolin (5,7,3%4'-tetrahydroxyflavone), which possesses a 3',4'-catechol exhibited 

a higher peroxyl scavenging activity than kaempferol (3,5,7,4'-tetrahydroxyflavone), which 

possesses only one hydroxyl at the 4' position (Bors et al, 1990). 
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Flavonoids with a 2,3 double bond and 4 carbonyl group are shown to possess a 

stronger antioxidant activity in a microsomal system compared to flavonoids without the 2,3 

double bond such as flavanones (Ratty et al, 1988). However, the importance of the 2,3 

double bond depends on the presence of other structural features. Ratty et al, 1988 has shown 

that quercetin (3,5,7,3',4'-pentahydroxyflavone), which possess a 2,3 double bond exhibited 

a stronger peroxyl scavenging activity compared to taxifolin (3,5,7,3',4'-

pentahydroxyflavanone), which possesses the same hydroxylation pattern but lacks the 2,3 

double bond. However, Rice-Evans et al, 1996, has shown that the radical scavenging ability 

of apigenin (5,7,4'-trihydroxyflavone), which possesses the 2,3 double bond was not 

significantly different from naringenin (5,7,4'-trihydroxyflavanone), which lacks this feature. 

This may be explained by the absence of the catechol structure on the B ring on both 

apigenin and naringenin, which is an important structural feature for antioxidant activity. 

The presence of a 3-hydroxyl on the C ring of flavonoids is important in increasing 

the stability of flavonoid radicals (Burda et al, 1991). The B ring torsion angle to the rest of 

the molecule significantly affects the free radical scavenging activity. The catechol hydroxyl 

groups on the B ring form intramolecular hydrogen bonds with the 3-hydroxyl, which aligns 

the B ring with A and C rings. Planar molecules allow better conjugation, electron 

delocalization and overall free radical scavenging ability compared to non-planar molecules. 

Flavonoids with a 3-hydroxyl group such as flavonols and flavanols are planar, but flavones 

and flavanones, which do not have this feature are twisted, which diminishes the scavenging 

activity. Burda et al, 1991 has also demonstrated that methyl or glycosyl substitution in the 3 

position diminishes the scavenging activity which is demonstrated by the lowered scavenging 
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activity of methyl and glycosylated derivatives of quercetin compared to the quercetin 

aglucon (Burda et al. 1991). 

c. Flavonoids and Steroid Hormone Dependent Cancers 

Cancer is the second leading cause of death in the U.S. and one in four deaths in the 

U.S is from cancer (Birt et al, 2004). Evidence for the role of flavonoids in cancer prevention 

has been demonstrated in many m vz'fro models, animal models and epidemiological studies. 

Suggested mechanisms of action for cancer prevention include induction of apoptosis by 

causing apoptotic DNA fragmentation and mitochondrial toxicity, prevention of carcinogen 

activation by inhibition of drug-metabolizing enzymes, and modulation of gene expression 

by estrogen receptor binding (Duthie et al, 1999). 

Epidemiological Evidence 

Epidemiological evidence for the role of flavonoids in cancer prevention is very 

conflicting and confusing. In the Zutphen Elderly Study, conducted in Zutphen, The 

Netherlands in 1985, the food consumption of 738 men (without any history of cancer) aged 

65 - 84 years was analyzed using a dietary history method (Hertog et al, 1994). The 

flavonols, quercetin, kaempferol, and myricetin, and the flavones, apigenin and luteolin, were 

analyzed. Five years of health and mortality data revealed that flavonoid intake was not 

associated with any cancer type but flavonoid intake from fruits and vegetables was inversely 

associated with alimentary and respiratory cancer risk (Hertog et al, 1994). These data 

suggested that other components in fruits and vegetables may be responsible for lowered 

cancer risk. Additionally, flavonoids may need to be associated with other natural 

components for a synergistic effect. A Netherlands Cohort Study was conducted in which 

120,853 men and women aged 55 - 69 years participated (Goldbohm et al, 1995). After 4 
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years of follow up, no association was found between flavonol and flavone intake and cancer 

(Goldbohm et al, 1995). The Netherlands Cohort Study was not complete in that they did not 

investigate whether other flavonoid subtypes were associated with cancer. In a retrospective 

cross cultural study (Seven Countries Study) consisting of 12,763 men aged 40 - 59, after 25 

years of follow up, no association between flavonoid intake and cancer was found (Hertog et 

al, 1995). Surprisingly flavonoid intake was positively associated with stomach cancer 

mortality. In contrast, 2 Finnish studies (the Finnish Mobile Clinic Health Examination 

Survey and the Alpha-Tocopherol, Beta Carotene Cancer Prevention Study) found inverse 

associations with lung cancer risk (Hertog et al, 1995). A borderline positive association was 

also found for colorectal cancer in the latter study (Hertog et al, 1995). Zheng et al., 1999 

reported lowered urinary excretion of isoflavones, especially glycitein, in breast cancer 

patients compared to controls in Shanghai (Zheng et al, 1999). Den Tonkelaar et al., 2001 did 

not observe this relationship in post-menopausal breast cancer patients (Den Tonkelaar et al, 

2001). The inconsistencies in these studies may be a result of other components in fruits, 

vegetables and soybeans, analysis of only a select number of flavonoids and polyphenols or 

spontaneous initiation of tumors from environmental factors. 

Animal models 

Troll et al, (1980) demonstrated that Sprague-Dawley rats fed a raw soybean diet 

experienced a reduction in mammary tumors caused by X-ray radiation compared to controls 

fed a casein diet. Although their results could be from other factors in soybeans including 

trypsin inhibitors, their report started the idea that isoflavones may play a role in this 

phenomenon (Troll et al, 1980). Since then many studies have shown the protective effects of 

soy isoflavones in animal carcinogenesis studies (Messina et al, 1994). 
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The time of flavonoid exposure may be important in cancer prevention (Lamartiniere 

et al, 1995, Lamartiniere et al, 2002). Lamartiniere et al, 1995 has shown that the number and 

development of DMBA-induced mammary tumors was reduced on day 50 postpartum in rats, 

that were injected subcutaneously with 5 mg genistein on days 2, 4 and 6 postpartam. 

Constantinou et al 1996 reported that the number of W-methyl-AT-nitrosourea-induced 

mammary tumors in Sprague-Dawley rats was moderately reduced by injections of 0.8 mg 

genistein daily for 6 months (Constantinou et al, 1996). A 10% fermented soy milk or 0.02% 

or 0.04% isoflavone mixture was fed to female Sprague-Dawley rats during and after 

initiation of tumors with 2-amino-1 -methyl-6-phenylimidazo[4,5-b]pyridine. Mammary 

tumor number and size were significantly lower than the control rats (Ohta et al, 2000). 

In female CF1 mice treated with azoxymethane, 2 % quercetin or 4 % rutin in the diet 

significantly reduced tumor incidence and inhibited hyperproliferation of tumor cells 

(Deschner et al, 1993). Quercetin reduced tumor incidence by 76% and tumor multiplicity by 

48% (Deschner et al, 1993). Quercetin inhibited N-nitrosodiethylamine-induced lung 

tumorigenesis during the initiation phase in mice when administered with drinking water at 9 

Hg/kg (Khanduja et al, 1999). Quercetin and luteolin, fed at 10 g/kg diet, decreased the 

incidence of fibrosarcomas and tumor size in Swiss albino male mice after injections of 20-

methylcholanthrecene (Elangovan et al, 1994). 

The citrus flavonoids have been shown to inhibit tumor growth in animal models. 

Dietary hesperidin, the major flavonone in orange juice, inhibited azomethane-induced colon 

carcinogenesis during the initiation and progression phases in male F344 rats at an oral dose 

of 1000 pg/g diet (Tanaka et al, 1997). In addition, concentrated orange juice delayed the 

development of DMBA-induced mammary cancer in rats (Tanaka et al, 1998). In similar 



www.manaraa.com

studies, So et al, 1996 compared the mammary inhibition capacity of concentrated orange 

juice, concentrated grapefruit juice, naringenin and naringin. Naringin and naringenin were 

given at a dose that was similar to that provided by the grapefruit juice. The greatest 

inhibition of cancer was seen with naringin supplemented, and with rats fed concentrated 

orange juice (So et al, 1996). These results are surprising since grapefruit juice contains 

significantly higher levels of naringin than orange juice, yet it did not cause the greatest 

inhibition. Other components in grapefruit juice may inhibit the anti-cancer effects of 

naringenin. The animal studies analyzing flavanones from orange and grapefruit juice are 

good studies because these are sources of flavonoids are consumed by humans. Therefore the 

results from these studies are very relevant to humans. However, the m vzfro experiments 

discussed in this section are highly irrelevant to human exposure since they do not take into 

account the metabolic forms of flavonoids that are present in the blood circulation. 

/n vzfro models of carcinogenesis inhibition 

More than 30 flavonoids were tested for antiproliferative effects and apoptosis in cell 

culture models by measurement of the biomarker caspase-3. The cell lines tested included the 

Caco-2 and HT-29, which are colon cancer cell lines, and MCF-7, which is a breast cancer 

cell line (Le Bail et al, 1998). All flavonoids except for flavone, myricetin and baicalen, 

inhibited proliferation in all cell lines without cytotoxicity. The EC% values ranged from 40 -

200 p,M, which are extremely high, and not near the maximum plasma flavonoid 

concentrations found in humans (Le Bail et al, 1998). Quercetin inhibited the normal 

proliferation of ovarian adenocarcinoma tumor cells, and at a concentration of 10 ^M, was 

able to suppress the proliferation of human ovarian OVCA 433 cells (Scambia et al, 1990). 

Quercetin reduced cell viability and DNA synthesis in A549 cells in a dose dependent 
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manner with a dose range of 15 - 58 |iM (Nguyen et al, 2004). Genistein, in the range of 15 -

120.pM, inhibited the proliferation and induction of apoptosis in HT29 colon cancer cells 

(Yu et al, 2004). So et al, 1996 reported that the citrus flavonoids hesperetin and naringenin 

and baicalein, galangin, genistein and quercetin all inhibited cell proliferation in MDA-MB-

435 human breast carcinoma cells with a concentration range of 5.9 - 140 p,g/mL (So et al, 

1996). Combinations of these flavonoids were more effective at inhibiting cell proliferation 

and required lower doses to produce the effect compared to individual flavonoids with IC50 

values of 4.7-9.2 pg/mL. Guthrie and Carroll 1998 reported that naringenin and naringin 

(glycosylated form of naringenin) were effective in inhibiting the growth of estrogen 

receptor-positive and estrogen receptor-negative breast cancer cells with IC% values of 1-18 

Hg/mL. Studies with genistein, quercetin and tangeretin show great promise in their 

anticancer mechanisms in that they are able to successfully suppress or inhibit growth of 

malignant cells but have no effects on their untransformed counterparts. 

Although many of these studies are conducted at flavonoid concentrations that were 

not physiologically relevant, some flavonoids, especially genistein, are inhibitory at levels 

that are comparable to some anticancer drugs such as doxorubicin (Seeram et al, 2003). 

Another flaw in these studies is that flavonoids are usually glucuronidated in the blood 

circulation rather than in free aglucon form. All of the above studies have been conducted 

with flavonoid aglucons and in contrast, m v/vo cells, either normal or malignant, would 

never encounter flavonoids in this form. Instead, cell culture studies should be conducted 

using flavonoid glucuronides because the 2 forms may have different activities (Zhang et al, 

1999). 
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d. Flavonoids and Atherosclerosis 

Cardiovascular disease is the number one cause of death in the U.S accounting for 

more than 40% of deaths. Atherosclerosis, which is the main cause of cardiovascular 

diseases, refers to the disease process of hardening and thickening of the arteries and mainly 

affects the coronary arteries that deliver blood to the heart. Atherosclerosis is a disease of 

inflammation, caused by endothelial dysfunction. Endothelial dysfunction can be caused by 

low-density lipoprotein (LDL) accumulation in the arteries, which undergo oxidation (Cook 

and Samman 1996). Oxidized LDL triggers a sequence of events involving the release of 

cytokines and growth factors, that lead to the accumulation of monocytes and macrophages 

from the blood to the endothelium (Diaz et al, 1997). Macrophages take up the oxidized LDL 

resulting in foam cell formation (Henriksen et al, 1981). Foam cell formation results in the 

development of atherosclerotic lesions and lesion progression (Ross, 1999). Other risk 

factors for endothelial dysfunction are platelet aggregation and thrombosis, blood pressure 

and vascular function, which will all be discussed below (Frankel, 1993, Ridker, 1999, Cook 

and Samman 1996, Birt et al, 2004). 

Inhibition of LDL oxidation 

It is believed that the antioxidant activity of flavonoids plays a role in inhibiting the 

development or progression of cardiovascular disease (Kris-Etherton et al, 2002). 

Mechanisms of inhibition of LDL oxidation are believed to be antioxidant, by reducing the 

formation of free radicals, inhibiting oxidation of a-tocopherol, and chelating divalent metal 

ions. 

Red wine is a rich source of over 200 phenolic compounds (German and Walzem, 

2000). Some of the flavonoids found in red wine are flavonols, monomelic catechins, and 
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polymeric anthocyanidins. Red wine also contains phenolic acids and resveratrol, which is a 

stilbene synthesized from phenylalanine, and not classified as a flavonoid. The most 

abundant flavonoid is catechin, a flavan-3-ol which is present in concentrations up to 300 

mg/L, and all of the above named compounds have been shown to possess anti-oxidant 

properties m Wfro (Abu-Amsha et al, 1996, DeWhalley et al, 1990, Vinson et al, 1995, Salah 

et al, 1995). 

Red wine was shown to increase the antioxidant capacity of human plasma and 

inhibit LDL oxidation m vzfro (Frankel et al, 1993, Duthie et al, 1998). Hayek et al, 1997 has 

shown that LDL isolated from atherosclerotic apolipoprotein E deficient mice, fed catechin, 

quercetin (each 50 p.g/day) or red wine (0.5 mL/day), were less oxidized than the mice fed 

the placebo. Fremont et al, 1998 reported that the level of LDL peroxidation products was 

reduced in rats fed an enriched diet in polyunsaturated fatty acids supplemented with 8 g/kg 

quercetin and catechin (2:1), and lengthened the lag time of LDL peroxidation in rats fed the 

same flavonoid supplemented diet but enriched with monounsaturated fatty acids. Textured 

soybean protein containing 56 mg isoflavones resulted in about 20 % lower concentrations of 

8-gp;-prostaglandin F%i (a biomarker for LDL oxidation) in 19 premenopausal women and 5 

men, compared to soybean protein containing only 1.9 mg isoflavones after 17 days 

(Wiseman et al, 2000). 

Structure-activity relationships for inhibition of LDL oxidation activity are not 

conclusive, but data from De Whalley et al, 1990, suggest that polyhydroxylated flavonoids 

including quercetin, morin, gossypetin and fisetin, have more inhibition activity compared to 

a flavonoid that is not hydroxylated, such as flavone (De Whalley et al, 1990). 



www.manaraa.com

36 

vifro models of platelet aggregation 

Mechanisms of platelet aggregation inhibitory activity include cyclo-oxygenase and 

lipoxygenase inhibition, antagonization of thromboxane formation and thromboxane receptor 

function (Tzeng et al, 1991). Myricetin, fisetin, kaempferol, morin and quercetin inhibited 

platelet aggregation and ATP release in rabbit platelets induced by arachidonic acid with 

IC50S ranging from 13 - 300 ^,M (Tzeng, 1991). Incubation of dilute purple grape juice (7 

mL/kg body weight per day for 14 days) with human blood platelets inhibited platelet 

aggregation, enhanced release of platelet derived nitric oxide and decreased superoxide 

production (Freedman et al, 2001). /n Wfro platelet aggregation was reduced in platelets from 

female nonhuman primates fed soy protein isolate with isoflavones compared to animals fed 

alcohol-washed soy protein isolate, which contained a negligible amount of isoflavones 

(Williams and Clarkson, 1998). 

Blood pressure and vascular function 

Systolic and diastolic blood pressure was significantly lower after 24 h in 15 male 

stroke-prone spontaneously hypertensive rats fed black and green tea, in substitution for 

water, compared to rats fed tap water. The flavonoids in the 2 teas included 0.5 g/L flavonols 

and 0.4 g/L catechins in the black tea, and 3.5 g/L catechins, 0.5 g/L flavonols in the green 

tea (Negishi et al, 2004). Hypertensive patients (n=40) fed 5.5 mL Concord grape juice / kg 

body wt per day for 8 weeks, experienced significant blood pressure lowering with average 

systolic and diastolic blood pressure reductions of 7.2 and 6.2 mm Hg respectively compared 

to patients that received a placebo (Park et al, 2004). In a 15 week randomized, double-blind 

study, 46 men and 34 post-menopausal women, ages 45 to 75 years, ingested 2 isoflavone 
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tablets daily, enriched in either biochanin A or formononetin for a total dose of 80 mg/d, 

randomly crossed over with a placebo in 2 6-week periods. Formononetin enriched 

isoflavone tablet consumption resulted in a significant reduction of arterial stiffness with 

improved systemic arterial compliance, reduction in total peripheral resistance and reduction 

in central pulse wave velocity compared with the placebo. These effects were not observed 

with the biochanin A enriched isoflavone tablets (Teede et al, 2003). These results may be 

due to the difference in bioavailability of the demethylation products of biochanin A and 

formononetin, which are genistein and daidzein respectively. Genistein is much less 

bioavailable than daidzein therefore enough genistein may not be absorbed to exert a 

significant biological effect. This phenomenon will be discussed in the metabolism and 

bioavailability section of this dissertation. 

Anti-inflammatory properties 

As mentioned before, atherosclerosis is an inflammatory disease and some flavonoids 

possess anti-inflammatory properties. In particular, intercellular adhesion molecule ICAM-1 

is induced during inflammation by cytokines such as IL-1, TNF-o, and IFN-y. Quercetin 

inhibited ICAM-1 expression and TNF-a in ECV304 human endothelial cells in a dose-

dependent manner (Kobuchi et al, 1999). In a well designed study by Koga et al, 2001, rat 

plasma metabolites of catechin and quercetin were tested on their effects on modulation of 

monocyte adhesion to human aortic U937 endothelial cells and on production of reactive 

oxygen species. Plasma was taken from 7 week old male Wistar rats 1 hr after administration 

of oral doses of 250 mg/kg body wt. catechin and 120 mg/kg body wt. quercetin. After 

incubation of the cells with catechin glucuronide and sulfates, cell adhesion to IL-IP-

stimulated cells was inhibited. Pre incubation with intact quercetin did not have this effect. 
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Opposite results were observed with quercetin, in that quercetin glucuronides, sulfates and 

methylated derivatives had no effect on cell adhesion, but intact quercetin was able to inhibit 

cell adhesion (Koga et al, 2001). 

Epidemiological Evidence 

The concept of the "French Paradox" refers to the association between low 

cardiovascular disease rates and risk scores for cardiovascular disease in France and 

Mediterranean countries, which are similar to other populations where the cardiovascular 

disease incidence was significantly higher. The risk factors accounted for in these analyses 

were cholesterol, blood pressure, age, sex, smoking and glucose intolerance (Birt et al, 2004). 

Previous studies have shown that these observations may be due to the increased 

consumption of red wine in these countries. In fact, studies have shown strong inverse 

associations between moderate red wine consumption (1-3 glasses of wine per day) and 

coronary heart disease mortality, while mortality from other causes was increased with 

higher alcohol intake (Klatsky et al 2003, Frankel et al, 1993, Renaud et al, 2004, Renaud et 

al, 1996 and Mukamal et al, 2005, Gronbaek, 2004). What is important, is that the inverse 

relationship between moderate alcohol intake and coronary heart disease mortality was 

stronger for wine, compared to other alcoholic beverages. This suggests that other 

components of wine besides alcohol are responsible for the observed association. Frankel et 

al, 1993 suggested that the lowered incidence of coronary heart disease mortality may be 

from the inhibition of LDL oxidation by flavonoids and other phenolic compounds in the 

wine. 

Tea, chocolate and cocoa are rich in flavonoids, especially flavan-3-ols (Wollgast et 

al., 2001, Hammerstone et al, 1999, Natsume et al, 2000). Studies have shown inverse 
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associations between consumption of these foods and incidence of cardiovascular disease 

(Lagiou et al, 2004, Arts et al, 2001, Geleijnse et al, 2001, Nakachi et al., 2000, and Sasazuki 

et al., 2000). 

The results from the Zutphen Elderly Study mentioned in the above Flavonoids and 

Cancer section, showed an inverse association between high flavonoid intake (around 30 

mg/day) and 50% reduction in coronary heart disease mortality rate compared to people with 

low flavonoid intake (less than 19 mg/day) (Hertog et al, 1993). Knekt et al, 1996 showed 

that a high intake of apples and onions (rich sources of quercetin) were associated with 

significant reductions in coronary mortality in 5,133 men and women in Finland. In Iowa, 

high flavonoid intake was associated with decreased risk of cardiovascular disease in 34,492 

postmenopausal women (Yochum et al, 1999). 

F. Metabolism and Bioavailability 

Understanding the metabolism and bioavailability of flavonoids is important 

because the biological activity of flavonoids at any given site of action depends on 3 events: 

(1) hydrolysis and absorption across the intestinal wall, (2) conjugation/phase II metabolism 

in the liver and (3) biliary excretion and gut microbial metabolism. The current 

understanding of flavonoid metabolism is that flavonoid glucosides must be hydrolyzed by 

microbial and/or mammalian glucosidases before absorption (Griffiths and Barrow, 1972), 

although recent conflicting reports show the absorption of flavonoid glucosides (Hollman et 

al, 1995, Talavera et al, 2004, 2003, Boyer et al, 2004), which will be discussed below. A 

significant amount of flavonoid aglucons (50 - 100%) are absorbed from the stomach and 

small intestine, and pass to the liver where they are conjugated by phase II metabolism 

enzymes in the liver hepatocytes (Scalbert et al, 2000). The conjugated flavonoids can be 
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excreted into the urine or bile (Yasuda et al, 1996). Flavonoid conjugates in the bile can be 

either reabsorbed by the small intestine after hydrolysis by glucuronidases (enterohepatic 

circulation), or pass to the large intestine, where the gut microflora can metabolize the 

flavonoid agucons into smaller phenolic compounds (Turner at al, 2003). 

a Hydrolysis and Absorption 

The stomach has been shown to be a probable area of absorption in animal models. 

Administration of 25 mmol/kg body weight of the isoflavone glucosides, daidzin and 

genistin, in male Wistar rats, resulted in the appearance of the aglucons, genistein and 

daidzein in plasma, but not their glucosides 30 min after dosing (Piskula et al, 1999). These 

results suggest that absorption is possible for isoflavone aglucons but not isoflavone 

glucosides. These results were confirmed even after absorption was restricted to the stomach, 

from pyloric ligation (Piskula et al, 1999). However, Talavera et al, 2003 has shown that 

anthocyanin glucosides were efficiently and rapidly absorbed from the stomach also in male 

Wistar rats using m wfw gastric administration. This discrepancy may be because the high 

gastric pH may be more favorable for anthocyanidins, which are charged molecules, 

compared to isoflavones and other flavanoids. 

Most of the evidence in humans point to the upper small intestine as the site of 

flavonoid hydrolysis and absorption. Day et al, 1998 reported that quercetin-4' -glucoside, 

naringenin-7-glucoside, apigenin-7-glucoside, genistein-7-glucoside (genistin) and daidzein-

7-glucoside (daidzin) were all hydrolyzed to their respective aglucons when incubated with 

cell free extracts from human small intestine. However, quercetin-3,4'-diglucoside, 

quercetin-3-glucoside, quercetin-3-rhamnoglucoside, kaempferol-3-glucoside and 

naringenin-7-rhamnoglucoside were not hydrolyzed. These results suggest that the human 
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small intestine shows higher specificity for certain flavanoid glucoside structures. For 

example, all glucosidic bonds in the 7 or 4' positions were hydrolyzed but not in the 3-

position. Flavonoid rhamnoglucosides were not hydrolyzed either. It is possible that the 

flavonoid glucoside structures that were resistant to hydrolysis may be hydrolyzed by 

bacterial glucosidase enzymes in the large intestine, and not the small intestine (Crespy et al, 

1999). 

Murota et al, 2002 used Caco-2 monolayers as a model for the intestinal epithelium to 

demonstrate the absorption of flavonoid aglucons compared to glucosides. They observed 

that the isoflavone aglucons genistein and daidzein at 10 pM, were efficiently transported 

across the Caco-2 cell monolayer compared to their respective glucosides. Less than 1/10^ of 

the isoflavone glucosides appeared in basolateral solution. Interestingly, when genistein 

absorption was compared to the flavones apigenin and luteolin, and the flavonols kaempferol 

and quercetin, the glucuronidated and sulfated forms of the flavones and flavonols 

predominated in the basolateral solution compared to the predomination of the genistein 

aglucon. This suggests that isoflavone aglucons are absorbed more efficiently compared to 

other aglucons of other flavonoid subgroups and that the intestinal wall is capable of 

glucuronidation and sulfation. Liu and Hu, 2002 support this observation reporting that 

genistein and apigenin glucuronides and sulfated were found in a Caco-2 cell model and in a 

perfused rat intestinal model. Choudhury et al, 1999 reported that after oral dosing of 

naringenin-7-glucoside in rats, most of the recovered naringenin was that of naringenin 

glucuronide in urine. After intravenous dosing of naringenin-7-glucoside, the main 

circulating form was the unchanged glucoside. Supporting data with isolated rat jejunum 

revealed that naringenin-7-glucoside was not absorbed, but the major metabolite was 
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naringenin glucuronide. These data suggest that naringenin-7-glucoside is hydrolyzed by 

glucosidases in the intestinal epithelium before glucuronidation. The absorption of flavonoid 

glucosides across Caco-2 cell monolayers was reported in Boyer et al, 2004. They showed 

that quercetin-3-glucoside from onion, apple peel and in pure form were absorbed across the 

monolayer. However, the peak absorption of quercetin-3-glucoside was only 0.29 nmol when 

treated with 100 nmol quercetin-3-glucoside, which can be considered minimal or negligible. 

This supports data by Murota et al, 2002 and Liu and Hu, 2002, who observed only 

isoflavone glucuronides and sulfates after incubation of flavonoid glucosides with Caco-2 

cells. However, Hollman et al, 1995 reported that in healthy ileostomy patients, quercetin 

glucoside was absorbed more efficiently than quercetin aglucon with an absorption of 52 % 

for quercetin glucosides from onions and 17 % for rutin. They suggested that the glucose 

transporter SGLT-1 was responsible for the transport of this glucoside. However, in a more 

recent study, Walle et al, 2000 in contrast to Hollman et al, 1995 reported that quercetin 

glucosides such as quercetin-4'-glucoside and quercetin-3,4'-diglucoside from onions were 

not absorbed in ileostomy patients, and were efficiently hydrolyzed to quercetin before 

absorption. The Hollman et al, 1995 data may not be reliable because they failed to directly 

measure quercetin or quercetin glucosides in the plasma, yet they assumed absorption of 

quercetin glucosides. 

Recently, Walle et al, 2005 has shown that quercetin-4-glucoside and genistein-7-

glucoside were rapidly hydrolyzed to quercetin and genistein respectively when incubated 

with human saliva. When flavonoids conjugated with other sugars aside from glucose, such 

as rutin (quercetin-3-rhamnoglucoside), quercitrin (quercetin-3-rhamnoside) and naringin 

(naringenin-7-rhamnoglucoside), were incubated with human saliva, hydrolysis did not 
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occur. These data suggest that human saliva only has the enzymatic capacity to hydrolyze 

flavonoid glucosides. Also, these data may explain why flavonoids are able to induce 

apoptosis in oral cancer cells (Hsu et al, 2004). All of the data presented here show the 

complexity in the understanding of flavonoid absorption. However, some evidence suggests 

that flavonoid glucosides may be absorbed, but only to an insignificant extent. The majority 

of the data points to more efficient and rapid absorption of flavonoid aglucons compared to 

glucosides. 

b. Hepatic Metabolism 

A large part of the flavonoid metabolism takes place in the liver (Kurzer and Xu, 

1997). This is evident by the large amounts of flavonoid conjugates found in the bile and 

urine (Arts et al, 2004).The liver is responsible for phase I and II metabolism of flavonoids, 

which aid in their excretion in the urine and bile. This phase of flavonoid metabolism is 

important because in humans, the conjugated forms of flavonoids are what target sites 

encounter, not the free aglucon form, unless administered intravenously. Enzymatic activities 

of the liver include glucuronyl conjugation by UDP-glucuronosyltransferase, sulfate 

conjugation by phenol sulfotransferase and methyl conjugation by catechol-O-

methyltransferase. Whether flavonoids are eliminated in urine or bile is dependent on the 

nature of their conjugation. For example, glucuronides are preferentially excreted in the bile, 

while sulfates are preferentially excreted in the urine (Mulder 1992). This is not the only 

determinant of excretion, however, and other factors such as molecular weight and 

lipophilicity must be taken into account. 

Flavonoids apparently undergo extensive enterohepatic recirculation and excretion, 

which is common to many drugs (Crespy et al, 1999, Liu and Hu, 2002). The flavonoids are 
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secreted into the mesenteric vein, metabolized by the liver, partially excreted into the bile 

(Crespy et al, 2003), and excreted back into the lumen (Liu et al, 2003). Walle et al, 2001 has 

shown that in healthy volunteers fed 400 mg chrysin (5,7-dihydroxyflavone), most of the 

dose appeared in feces as free chrysin. In parallel experiments with rats, they reported that 

high concentrations of chrysin conjugates were in the bile. Walle et al, 2001 assumed that the 

chrysin appearing in the feces was from enterohepatic recirculation and subsequent microbial 

deconjugation by glucuronidases or sulfatases in the lumen. This could have been the case, 

but most of the dose appearing in the feces could have been from poor absorption. In studies 

with catechin in rats, Donavan et al, 2001 reported that catechin was methylated, sulfated and 

glucuronidated in the liver and that the circulating forms of catechin were in the conjugated 

form. 

Crespy et al, 2003 observed that flavonoids with catechol groups such as quercetin, 

luteolin, eriodictyol and catechin were more likely to be methylated by the liver than other 

flavonoids. Although phase II metabolism is the predominant process in the liver pertaining 

to flavonoids, phase I oxidative reactions occur. Incubation of daidzein with hepatic 

microsomes from male Wistar rats resulted in the formation of the oxidative products, 6-

hydroxydaidzein, 8-hydroxydaidzein, 5,6-dihydroxydaidzein, 3%6-dihydroxydaidzein, 3'-

hydroxydaidzein, 2-hydroxydaidzein, 3',8- dihydroxydaidzein, 6,8-dihydroxydaidzein and 

3',5,6- trihydroxydaidzein (Kulling et al, 2000). Incubation of daidzein with human hepatic 

microsomes only resulted in 6-hydroxydaidzein, 8-hydroxydaidzein, 3',6-dihydroxydaidzein, 

3 ' -hydroxydaidzein and 3\8- dihydroxydaidzein (Kulling et al, 2001). Incubation of 

genistein with rat and human hepatic microsomes resulted in 6-hydroxygenistein, 8-

hydroxygenistein and 3' hydroxygenistein. Oxidative metabolites of methoxylated 
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flavonoids such as formononetin, biochanin A and glycitein were analyzed by this group. 

They reported that formononetin and biochanin A were oxidatively demethylated to daidzein 

and genistein initially, before the hydroxylation reaction occurred. The main metabolites 

were 6-hydroxydaidzein, 8-hydroxydaidzein and 3' -hydroxydaidzein for daidzein, and 6-

hydroxygenistein, 8-hydroxygenistein and 3 '-hydroxygenistein for genistein. 8-

Hydroxyglycitein was the main metabolite of glycitein, whereas a small amount of the 

oxidative demethylated product 6-hydroxydaidzein was detected (Kulling et al, 2000 and 

Kulling et al, 2001). Glycitein may react differently compared to biochanin A and 

formononetin because it is methylated in position 6 instead of position 4% as in biochanin A 

and formononetin. The acidity of the 4'-methoxyl group may be different from the acidity of 

the methoxyl group in the 5, 6 or 7 position of the flavonoid structure. The products of 

oxidative metabolism have all been detected in human urine (Heinonen et al, 2003). 

c. Gut Microbial Metabolism 

Less than 25% of intact flavonoids are excreted in the urine in humans and animal 

models (Scalbert et al, 2000). This observation indicates that a significant portion of 

flavonoids are not accounted for. There are 3 possibilities for the flavonoids that are 

unaccounted for. First, the flavonoids were excreted in the feces, second, the flavonoids were 

metabolized by the gut microflora or third, some of the flavonoids may have been absorbed 

into target tissues. While it is possible that target tissues may have taken up some flavonoids, 

studies suggest that it is unlikely that tissue uptake of flavonoids occur in significant 

amounts. In rat studies, Coldham and Sauer, 2000 and Chang et al, 2000 reported that the 

amount of genistein recovered in rat tissues was around 0.5%, which is not a significant 

amount. Additionally, reports have shown that the amounts of intact flavonoid aglucons in 
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feces are less than 10% of the ingested dose (Xu et al, 1994, Xu et al, 1995). This suggests 

that a significant portion of flavonoids are metabolized by the gut microflora in the large 

intestine. After biliary excretion into the lumen, the flavonoids are deconjugated by bacterial 

glucuronidases to release the aglucons. The flavonoid aglucons can then be re-absorbed into 

circulation or be secreted into the large intestine where anaerobic reductive reactions are 

carried out by the host microfloral population that degrade the flavonoids into smaller 

phenolic acids. The flavonoid metabolites produced by these reactions are either absorbed 

and excreted in the urine, or excreted in feces. 

The microbial metabolism of some flavonoids has been studied to some extent. 

Quercetin glucosides such as rutin (quercetin-3-rutinoside) and quercetin-3-glucoside are 

hydrolyzed to quercetin by bacterial ^-glucosidases using various m v/fro microbial 

fermentation systems (Rechner et al, 2004, Aura et al, 2002, Winter et al, 1989, Schneider et 

al, 1999). However, Justesen et al, 2000 did not observe quercetin as a hydrolysis product of 

rutin in an m Wfro fecal fermentation system. This may be because they did not sample and 

analyze the fermentation system between 8 and 24 h after the start of the incubation with 

rutin. Quercetin may have been formed and rapidly metabolized in this 16 h period (Justesen 

et al, 2000). The quercetin aglucon is reduced to taxifolin, then further cleaved in the C ring 

to degradation products such as 3,4-dihydroxyphenylacetic acid and phloroglucinol (Labib et 

al, 2004, Figure 5). Other quercetin degradation products include 3,4-dihydroxytoluene 

(Labib et al, 2004), 3-(3-hydroxyphenyl)-propionic acid (Rechner et al, 2004), 3-

hydroxyphenylacetic acid (Aura et al, 2002, Justesen et al, 2000) and 3-(3,4-

dihydroxyphenyl)-propionic acid (Braune et al, 2001). Most flavonoids are degraded in a 

similar fashion as quercetin by bacterial C-ring cleavage. The compounds 4-



www.manaraa.com

hydroxyphenylacetic acid, 3-(3,4-dihydroxyphenyl)-propionic acid and 3-(4-hydroxyphenyl)-

propionic acid are C-ring cleavage products of kaempferol (Figure 5), luteolin and apigenin 

(Figure 6) respectively (Winter 1989, Schoefer et al, 2003). The citrus flavonone naringenin 

was cleaved to 3-(4-hydroxyphenyl)propionic acid and 3-phenylpropionic acid (Labib et al, 

2004, Rechner, et al, 2004 and Schoefer, 2003) and hesperetin was initially demethylated to 

eriodictyol, before C-ring cleavage to 3-(3-hydroxyphenyl)propionic acid (Labib et al, 2004). 

Anaerobic metabolism of the isoflavones genistein and daidzein have been 

extensively studied and the pathway of degradation is similar to other flavanoid subgroups 

but with subtle differences. Genistein microbial metabolites have been identified as 

dihydrogenistein, 6'-hydroxy-0-desmethylangolensin, 2-(4-hydroxyphenyl)-propionic acid 

and phloroglucinol. Genistein is reduced to dihydrogenistein, before partial C-ring cleavage 

to produce 6' hydroxy-O-desmethylangolensin (6'-OH-ODMA), then fully cleaved to form 

the products 4-hydroxyphenyl-2-propionic acid and phloroglucinol (Chang et al, 1995, 

Coldham et al, 1999, Coldham et al, 2002 and Heinonen et al, 1999, Figure 8). All 

metabolites of genistein have been found to be non-estrogenic compared to genistein 

(Wiseman, 1999). Daidzein gut microbial metabolism has been shown to result in 

dihydrodaidzein, O-desmethylangolensin (ODMA), equol (7-hydroxyisoflavan) and cis-4-

hydroxy-equol (Axelson, 1982, Bannwart et al, 1984, Heinonen et al, 1999, Heinonen et al, 

2003, Joannou et al, 1995). Daidzein is degraded in the same fashion as genistein but another 

degradation product is formed from dihydrodaidzein, which is equol (Figure 8). Equol is 

formed from a decarboxylation reaction from dihydrodaidzein and is more estrogenic than 

daidzein (Rowland et al, 1999). Only about 30% of humans are able to produce equol from 

daidzein, which may be because of differences in bacterial populations (Lampe et al, 1998, 
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Rowland et al, 2000). ODMA has weak estrogenic activity compared to daidzein and equol 

(Rowland et al, 1999, Joannou et al, 1995). Anaerobic microbial glycitein metabolites have 

not been well characterized but m Wfro, glycitein has been shown to be demethylated to 

6,7,4'-trihydroxyisoflavone (6-hydroxydaidzein) (Hur et al, 2000, Figure 8). All of the above 

named isoflavone metabolites have been identified in urine (Axelson, 1982, Bannwart, 1984, 

Heinonen et al, 1999, Heinonen et al, 2003, Joannou et al, 1995). The gut microflora play an 

important role in the metabolism of flavonoid compounds and the formation of important 

metabolites. Antibiotic administration to human volunteers significantly decreased the 

excretion of bacterial isoflavone metabolites (Kilkkinen et al, 2002). Bowey et al, 2003, 

reported that germ free administered a soy protein diet did not excrete any bacterial 

isoflavone metabolites. When the germ free rats were colonized with microflora from human 

feces, isoflavone metabolites were excreted. Interestingly, when germ free rats were 

colonized with microflora from equol producers, the rats were able to excrete equol 

compared to the rats that were colonized with microflora from non-equol producers. 

The bacteria that are responsible for flavonoid degradation are still in question. Most 

m Wfro fermentation systems used for identification of flavonoid metabolites use fecal 

slurries that are representative of the many types of bacteria in the gut. Early studies have 

shown that spp. from ruminai fluid cleaved the C-ring of the flavonoid 

glucosides rutin and quercitrin, but not of the aglucon quercetin (Cheng et al, 1969, 

Krishnamurty et al, 1970, Cheng et al, 1971). In 1985, Morris and colleagues isolated three 

obligate anaerobic bacteria that were able to hydrolyze flavonoid glucosides to their 

aglucons: BacferoWgg BocferoWaj w/ii/bfrngj and ovofwa (Morris et 

al, 1985). Ew&zcfe/iwm romw/wj and Enferococcwj caaWf/Zavwa were identified and isolated 
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from human feces for hydrolysis activity on genistin, daidzin (Schoefer et al, 2002), rutin, 

quercetin-3-glucoside, luteolin-7-glucoside and kaempferol-3-sorphoroside-7-glucoside 

(Schneider et al, 1999, Schneider et al, 2000 and Schneider et al, 2000). C-Ring cleavage 

activity of flavonoids was identified in (Schoefer et al, 2003, Hur et 

al, 2002) and Ewbacfenwm ramw/w.* (Schoefer et al, 2002). Recently, Steer et al, 2003 

supported the role of BacfgnWgj spp. and CWfrK/wm spp. in flavonoid metabolism. They 

incubated feces from human volunteers with isoflavones with and without the presence of a 

prebiotic such as fructooligosacchharide. They hypothesized that the prebiotic would divert 

bacterial metabolism away from isoflavone metabolism. The addition of the prebiotic caused 

significant increases in spp. and spp. and significant 

reductions in BacferoWgf spp. and CWfrw#wfM spp. Bacfgrowfgj, and 

spp. are present in high numbers (10* - 10^ CFU/g) in the colon (Turner et al, 

2003) and it is likely, from the above studies, that all of these species play a role in the 

pathway of gut microbial metabolism of flavonoids. The bacterial species responsible for 

equol formation has not been identified as of yet. 
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Schoefer et al, 2003) 
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d. Bioavailability 

The term bioavailability refers to a proportion of a drug or compound that reaches the 

systemic circulation unchanged, so that it may exert its pharmacological or biological effect. 

This term encompasses the absorption, metabolism and excretion of compounds and can be 

measured in 2 different ways. From a toxicological point of view, bioavailability (F) is 

measured as the area under the curve (AUG) for a specific test route compared to the AUG 

for the intravenous route. Therefore, for oral administration of a compound, 

An F of 1.0 means that the bioavailability of the compound is 100%. 

In contrast, from a nutritional point of view, bioavailability is measured as the amount 

of the compound excreted as a percentage of ingested dose of the compound. Measurements 

of AUG using the intravenous route could not be made, therefore, the nutritional definition of 

bioavailability will be used throughout this disssertation. Therefore, 

xlOO 

The bioavailability of flavonoids varies, and depends on many factors such as 

chemical structure, lipophilicity, molecular weight, gut microbial metabolism, food matrix 

and possibly other components of the diet. The bioavailability of flavonols such as quercetin 

has been extensively studied in humans and animal models. Quercetin is present principally 

in glucosidic form in foods as quercetin-3-glucoside, quercetin-4' -glucoside and quercetin-3-

rutinoside or rutin. Gugler et al, 1975 reported that quercetin was not detected in urine or 



www.manaraa.com

plasma after a 6 gram oral dose in 6 volunteers. They recovered 53% of the ingested dose in 

feces. They concluded that quercetin was not absorbed and was extensively metabolized by 

gut microorganisms (Gugler et al, 1975). Since then, many quercetin bioavailability studies 

have been conducted in animal models and human studies. 

Hollman et al, 1995 reported that quercetin was absorbed in 9 ileostomy patients after 

3 separate feedings, separated by 4 day washout periods, of onions, a rich source of 

quercetin-4 ' -glucoside, pure rutin, and pure quercetin aglucon. All quercetin sources 

provided around 100 mg quercetin aglucon. They reported an average bioavailability of 

0.5% (Hollman et al, 1995). Additionally, De Vries et al, 1998 reported that the 

bioavailability of quercetin from strong black tea and onions was 0.5 and 1.1% respectively 

after 3 days of feeding in 15 subjects (De Vries et al, 1998). These results suggest that the 

bioavailability of quercetin is extremely low and could be considered not bioavailable at all. 

Since quercetin is found in different glucosidic forms in foods, the bioavailability of 

the different quercetin glucosides has been compared. Graefe et al, 2001 conducted a 4 way 

cross over study, in which 12 volunteers ingested 100 mg quercetin-4' -glucoside, 200 mg 

rutin, onion supplement, whuch was rich in quercetin-4'-glucoside and equivalent to 100 mg 

querectin aglucon, and buckwheat tea, which was rich in rutin and equivalent to 200 mg 

quercetin aglucon, in random order. The bioavailability of quercetin from onions was 6.5 %, 

which was significantly higher than that of quercetin from buckwheat tea 1.0 % (Graefe et al, 

2001). This suggests that rutin is less bioavailable than quercetin-4'-glucoside. Additionally, 

they observed that quercetin was more bioavailable from onions, which was 6.5 %, compared 

to the pure quercetin-4'-glucoside, which was 4.5 %, that further supports the observations 
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by Cermak et al, 2003, in that the quercetin form and food matrix affect quercetin 

bioavailability. 

Quercetin-3-glucoside was found to be more than twice as bioavailable when 

administered with ground beef, compared to a commercial standard diet in pigs (Cermak et 

al, 2003). These results are likely due to the lipid content of the ground beef. Recently, 

Lesser et al, 2004 has shown that the lipid content of the diet affected the bioavailability of 

quercetin in pigs. They fed 30 [imol/kg body weight quercetin, as quercetin aglucon and 

quercetin-3-glucoside in 3 test meals consisting of 3,17 and 32 g fat / 100g diet. Similar to 

previous mentioned studies, quercetin-3-glucoside was more bioavailable than quercetin 

aglucon in each meal. However, no matter what form quercetin was in, the bioavailability 

was 50% higher in the 17% fat diet compared to the 3% fat diet. There was no difference 

between the 17 and 32% fat diets (Lesser et al, 2004). It is possible that flavanoids are more 

soluble in fat-containing matrices and thus, better absorbed by passive diffusion across the 

intestinal wall. These results have not been confirmed in humans yet, except for a few studies 

with isoflavones that have shown that food matrix and background diet did not affect 

isoflavone bioavailability (Tew et al, 1996, Xu et al, 2000). It would be interesting to 

determine if the fat content of the human diet play a role in flavonoid bioavailability. 

The structure of isoflavones has been suggested to play a role in bioavailability. 

Zhang et al, 1999 has shown that genistein, with a bioavailability of 29 % was significantly 

lower than daidzein and glycitein with bioavailabilities of 46 % and 55 % in 14 volunteers 

fed 4.5 |imol/kg body weight. Data by King et al, 1998 confirmed this observation in rats, in 

that genistein, with a bioavailability of 12% was lower than daidzein, with a bioavailability 

of 17% after an oral dose of 74 and 77 ^mol/kg body weight. Xu et al, 1995 reported similar 
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bioavailabilities of 16% and 10% for daidzein and genistein respectively in 7 women given 3 

doses of 3, 7 and 10 pimol/kg body weight in soymilk, separated by 2 week washout periods. 

Few studies have investigated the bioavailability of the flavanones nanngenin and 

hesperetin. The bioavailability of naringenin was reported to be 30.2 % from grapefruit juice 

and 1.1% from orange juice in 7 volunteers. Hesperetin bioavailability was 5.3% (Erlund et 

al, 2001). This obvious difference in nanngenin bioavailability between the 2 food matrices 

may be because of differences in the juice matrix. Manach et al, 2003 reported that the 

human bioavailability of naringenin and hesperitin in 5 volunteers did not differ after a dose 

of 444 mg/L hesperetin and 96 mg/L naringenin in orange juice. 

More flavonoid bioavailability studies need to be conducted with flavonoid 

subclasses other than flavonols and isoflavones, which have been extensively studied. 

Subclasses such as flavanones and catechins are widely and frequently consumed and 

warrant further studies. 

G. Toxicity 

Scientific reports of beneficial health effects of flavonoids have led to their increased 

consumption in health-conscious populations, especially in the form of dietary supplements. 

Flavonoid dietary supplements usually contain high concentrations of flavonoids and the 

recommended doses greatly exceed doses that would be obtained from a diet that was rich in 

fruits and vegetables. The appeal of these dietary supplements is that they cost significantly 

less than prescribed drugs for certain conditions, they are easily accessed and they are 

advertised as 'natural' replacements to synthetic drugs for those individuals wary of taking 

synthetic drugs with side effects. However, manufacturers of these dietary supplements 

advertise their health effects, which are misleading because most of the flavonoid 
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formulations have not been studied in human clinical trials. Dietary supplements are 

regulated by the Federal Drug Administration (FDA) under the Dietary Supplement Health 

and Education Act (DSHEA) of 1994. This act allows the sale of dietary supplements 

without the extensive premarket approval process required of new drugs. Therefore, any 

adverse effects from inappropriate use, side effects or interactions with other drugs are not 

known. 

Pro-oxidant Activity 

As mentioned in the antioxidant activity section, reactive oxygen species (ROS) such 

as peroxyl and hydroxyl radicals, can damage DNA, lipids and other biological molecules. 

Hodnick et al, 1986, reported that the flavonols quercetin, myricetin and quercetagetin were 

effective at undergoing autoxidation and causing mitochondrial respiratory bursts resulting in 

superoxide, hydrogen peroxide and hydroxyl radical formation. Ahmad et al, 1992 supported 

this finding, demonstrating that flavonols with pyrogallol or catechol rings autoxidized in the 

presence of transitional metals producing ROS, which were able to accelerate LDL-

oxidation. This is important in cardiovascular disease because low levels of copper ions are 

released during the formation of atherosclerotic lesions or other tissue injury (Smith et al, 

1992). Quercetin, naringenin and morin were also able to cause DNA damage through the 

formation of ROS (Rahman et al, 1989, Sahu and Gray, 1997). Epigallocalechin gall ate 

(EGCG) of the catechin flavonoid subgroup, was shown to cause DNA damage and H2O2 

formation in the presence of transition metal ions and induced DNA oxidation in HL-60 cells 

(Furukawa et al, 2003). This pro-oxidant activity was supported in vivo, as EGCG enhanced 

dimethylhydrazine or nitrosamine induced colon carcinogenesis in male F344 rats (Hirose et 

al, 2001). 
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Topoisomerase Inhibition 

At physiological concentrations (< 1 |iM), flavonoids such as genistein, quercetin, 

myricetin, biochanin A and equol, which is a bacterial metabolite of daidzein, have been 

shown to be topoisomerase II inhibitors (Austin et al, 1992, Azuma et al, 1995). 

Topoisomerase II inhibitors cause double strand DNA lesions at topoisomerase-binding sites. 

Ross, 1998 and Ross et al, 1996 has observed that increasing maternal consumption of 

topoisomerase inhibitors elevated leukemia risk almost 10-fold in infants. This is important 

because high flavonoid intake by pregnant women, such as the concentrations found in 

dietary supplements, may be a significant risk factor for infant leukemia. Microbial and 

phase II metabolism of flavonoids may play a role in their topoisomerase II inhibitor activity. 

Equol, which is a microbial metabolite of daidzein, inhibits both topoisomerase I and II 

activity, while daidzein does not. Metabolites of genistein such as dihydrogenistein, genistein 

glucuronide, genistein sulfate and 3 ' -O-methylquercetin have been shown to lose their 

topoisomerase II inhibitory activity compared to genistein (Chang et al, 1995). 

Thyroid Hormone 

Endemic goiter in populations where millet is the main dietary staple, has been 

attributed to the high concentrations of apigenin and luteolin in the millet (Gaitan et al, 1995, 

Sartelet et al, 1996). The frequent consumption of isoflavones in soymilk in human infants, 

may explain their high incidence of thyroid disease (Fort et al, 1990). Structure activity 

studies by Divi et al, 1996 revealed that flavonoids with free resorcinol moieties, including 

fisetin, kaempferol, naringenin, quercetin and genistein, were the most potent inhibitors of 

thyroid peroxidase, an enzyme important for thyroid hormone synthesis. Inhibition of thyroid 

hormone synthesis leads to elevated thyroid stimulating hormone levels, which result in 



www.manaraa.com

60 

growth and dysfunction of the thyroid gland. However, in a randomized, double blind, 

placebo-controlled study, the effect of a daily isoflavone supplement containing 90 mg 

isoflavone aglucons / day, was compared to a placebo in 38 postmenopausal women ages 64 

- 83 years old. Serum thyroid-stimulating hormone, thyroxine, and triiodothyronine levels 

were measured at baseline and after 90 and 180 days. There were no differences between the 

isoflavone supplement and placebo groups at each measurement (Bruce et al, 2003). These 

data show that thyroid hormone levels are not affected by isoflavone supplementation, at 

least not in postmenopausal adults. 

Flavonoid-Drug Interactions 

Flavonoids have been shown to inhibit and induce human cytochrome P450 (CYP) 

enzymes (Tassaneeyakul et al, 1993 and Guengerich et al, 1994). This property is beneficial 

in chemopreventative cases, because CYPs play a role in activation of carcinogens (Doostdar 

et al, 2000), but is a toxic property in flavonoid-drug interactions because CYPs are also 

responsible for the metabolism of therapeutic drugs. However, much of this work has been 

conducted m Wfro with flavonoid concentrations ranging from 11 - 35 mM, which is not 

physiologically relevant. Flavonoid-drug interactions may alter the 

bioavailability/pharmacokinetics of certain drugs resulting in an inhibition of the therapeutic 

effect, or enhancement, resulting in toxicity depending on the flavonoid structure (Tang et al 

2000). Naringenin, the major flavanone in grapefruit juice, inhibits intestinal CYP3A4 within 

30 minutes of ingestion, which significantly increased the bioavailability of certain drugs 

including felodipine, nitrendipine, nisoldipine and verapamil (Fuhr, 1998). Therefore 

ingestion of grapefruit juice along with certain drugs that must be extensively metabolized 

should be avoided. 
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Flavonoids have been reported to overcome multidrug resistance (MDR) to cancer 

therapy by inhibiting drug efflux transporters such as P-glycoprotein (Kartner et al, 1983). 

MDR is a phenomenon where cancer cells aquire resistance to anti-cancer agents during 

cancer therapy, by overexpression of P-glycoprotein and multidrug resistance associated 

proteins (MRPs), which pump anti-cancer drugs out of cells (Galati et al, 2004). This results 

in low cellular drug concentrations. Methoxylated flavonoids such as 5,7,3',4'-

tetramethoxyflavone, diosmetin, chrysoeriol, tamarixetin and isorhamnetin were reported to 

be the best MRP inhibitors in vffro with IC50 values ranging between 2.7 and 14.3 pM (van 

Zanden et al, 2005). The inhibition of MRPs may be beneficial when applied to cancer 

therapy but inhibition of MRPs may possibly disturb the kinetics of other drugs or food 

constituents that are normally pumped out of cells, resulting in toxicity. This area of 

flavonoid - drug interactions deserves further study m 

Estrogenicity 

You et al, 2002 has reported that genistein's estrogenic activity was associated with 

decreased fertility and increased sexual dysfunction in experimental animals at high doses of 

800 ppm (You et al, 2002). Genistein (1 p,M) was found to enhance the proliferation of 

MCF-7 human breast cancer cells m vifro (Chen, 2004) and was uterotropic at a high dose of 

80 |ig/g body weight per day for 91 days in adult Wistar rats (Picherit et al, 2001). Breast 

tissue proliferation was stimulated in premenopausal women with benign or malignant breast 

tumors, after short term intake of soybeans (McMichael-Phillips et al, 1998). 

Overall, the issue of flavonoid toxicity warrants more attention and research, because 

of the increasing consumption of flavonoids in dietary supplements in adults and children. 

However, most of the research published, suggests that flavonoids are non-toxic at doses 
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consumed in the diet. The interaction that certain flavonoids have with other drugs is a 

relatively new area in research, and is currently being studied in many research labs. 
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Abstract 

Gut microbial degradation of the soy isoflavone glycitein, 7,4' -dihydroxy-6-

methoxyisoflavone, was investigated by incubating glycitein anaerobically, with feces from 

12 human subjects. The subjects' ages ranged from 24 to 53 y with a body mass index (BM1) 

of 20.9 to 25.8 kg/m^ (mean BMI = 24.0 ± 1.1 kg/nf) respectively. There were no significant 

differences between the degradation rates for each subject at glycitein concentrations from 10 

- 250 nmol/L (average k = 0.32 ± 0.03 h"\ p > 0.05). Glycitein degradation followed an 

apparent first order rate loss. There were no differences in the degradation rates of glycitein 

within subjects, when incubated in the presence or absence of daidzein and genistein 

(average k = 0.30 ± 0.21 h""* vs 0.23 ± 0.19 h~\ p = 0.72). Three different groups segregated 

according to their degradation rates for glycitein described as high (k = 0.67 ± 0.14 h"^), 

moderate (k = 0.34 ± 0.04 IT*) and low (k = 0.15 ± 0.07 h~i) glycitein degraders (p < 0.0001). 

Four glycitein metabolites characterized by LC-MS (electrospray ionization using positive 

ionization mode), were dihydroglycitein, dihydro-6,7,4'-trihydroxyisoflavone, 5-OMe-O-

desmethylangolensin. Two subjects produced 6-OMe-equol and 1 subject produced daidzein 

as an additional metabolite of glycitein. 

Introduction 

Isoflavones are a subclass of compounds that belong to a much larger group of 

polyphenolic compounds called flavonoids. Isoflavones mainly occur in plants of the 
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legwfMZMmae family (1). However, soybeans and soybean-derived foods are the main 

sources of the isoflavones genistein (5,7,4'-trihydroxyisoflavone), daidzein (7,4'-

dihydroxyisoflavone) and glycitein (7,4'-dihydroxy-6-methoxyisoflavone) where the total 

isoflavone concentration can reach up to 2 g per kg fresh weight (2). The three soy 

isoflavones are all hydroxylated in the 7 and 4' positions of the isoflavone skeleton (Figure 

1) which makes them structurally similar to estradiol (3). Apparently, because of this 

similarity, isoflavones possess estrogenic activity, and have been shown to bind to estrogen 

receptors (4). Isoflavones have been associated with many positive health effects in chronic 

diseases, such as decreased risk of coronary heart disease and certain types of cancers (5,6), 

and reduced rates of osteoporosis (7). 

Isoflavones are found as both glucosides and aglucons in soy foods (8). Oral ingestion 

of isoflavone glucosides lead to their hydrolysis in the small intestine by bacterial (3-

glucosidase activity and (3-glucosidases in the cells of the gastrointestinal mucosa (9). The 

free aglucons resulting from hydrolysis can be absorbed and undergo first pass hepatic 

metabolism (10) or be metabolized further by the gut microflora. Experiments with germ-free 

rats showed that isoflavone metabohtes were not excreted and antibiotics decreased the 

production of isoflavone metabohtes in humans (11,12). Understanding the metabolism of 

isoflavones in the gut is important because this process may affect their bioavailability, and 

thus their absorption and biological activities in Wvo (13). 

The anaerobic bacterial metabolism of genistein and daidzein by gut microflora has 

been studied to some extent. Genistein metabolites resulting from anaerobic metabolism in 

the human gut have been identified as dihydrogenistein, 6 ' -hydroxy-O-desmethylangolensin 

(6'-OH-ODMA), 4-hydroxyphenyl-2-propionic acid, p-ethylphenol and phloroglucinol (14-
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17). Anaerobic bacterial metabolism of daidzein has been shown to result in dihydrodaidzein, 

O-desmethylangolensin (ODMA), equol and cia-4-hydroxy-equol (18-22). Glycitein 

comprises less than 10% of the total isoflavone amount in soybeans and soybean foods and is 

probably the reason why its metabolism has not been well studied. However, glycitein 

comprises about 50 % of the isoflavone amount in soy germ (23). Glycitein has been shown 

to be demethoxylated m Wfro by Ewbacferiwrn /wnoawm to 6,7,4'-trihydroxyisoflavone (24). 

Recently, glycitein metabohtes such as dihydroglycitein, 5'-0-methyl-0-

desmethylangolensin (5'-OMe-ODMA) and 6-O-methyl-equol (6-OMe-equol) have been 

isolated and characterized in human urine (21). 

Preliminary studies in our lab have shown that the rate of disappearance of glycitein 

was significantly slower than that of genistein (p<0.0001) in an m Wfro fecal fermentation 

system (13) and the human bioavailability of glycitein was significantly higher than genistein 

in vivo (25). The aim of this study was to further characterize glycitein metabolism in 

humans by investigating the kinetics of the degradation reaction and the metabohtes of 

glycitein using an in vifro fecal fermentation system. The variability among human subjects 

was also investigated. 

Materials and Methods 

Chemicals 

Glycitein was synthesized according to Lang' at-Thoruwa et al, (26). Daidzein and 

2,4,4'-trihydroxydeoxybenzoin (THE) were synthesized using the method of Song et al, (27). 

Genistein was synthesized according to a modification of Chang et al, (28). 6,7,4'-

Trihydroxyisoflavone was purchased from Indofine Chemical Co., Inc (Hillsborough, NJ). 

Dihydrodaidzein, dihydrogenistein, equol and O-desmethylangolensin (ODMA) were 
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purchased from Plantech U.K. (Reading, England). All other chemicals including HPLC 

grade acetonitrile, methanol, acetic acid, and dimethyl sulfoxide (DMSO) were purchased 

from Fisher Scientific (Fairlawn, NJ). All aqueous solutions were prepared using Milli-Q 

system (Millipore Co., Bedford, MA) HPLC grade water (MQ water). 

Subject protocol 

Four men and eight women volunteered from Iowa State University and the 

surrounding Ames area. The subjects were in good health and not taking any medication. 

The subjects' ages ranged from 24 to 53 y with a body mass index (BMI) of 20.9 to 25.8 

kg/mz (mean BMI = 24.0 ± 1.1 kg/m^) respectively. The ethnicities of the subjects included 

6 Caucasians, 3 African Americans, 1 Chinese immigrant, 1 Asian-Indian and 1 Latino. 

Subjects were given written instructions on soy containing foods to avoid for 1 week before 

providing one fresh fecal sample in sealed sterile containers (Sage Products Inc., Crystal 

Lake, IL). Approval of the study design was obtained from the Iowa State University Human 

Subjects Research Committee in 2003. 

Isoflavone Fermentation 

Brain-heart infusion (BHI) broth media (Difco Laboratories, Detroit, MI) was 

prepared according to Zheng et al, (25). The media contained a rezasurin color indictator to 

ensure the fermentation systems were anaerobic. Samples of 1.5 g fresh feces were 

immediately transferred from their sealed sterile containers into incubation test tubes (Fisher 

Scientific, Fairlawn, NJ) containing 27 mL BHI media. The incubation tubes were vortexed 

for 5 s to make a fecal suspension. Daidzein, glycitein and genistein were dissolved in 100% 

DMSO and added to a fecal suspension for a final concentration of 100 pimol/L. Glycitein 

dose response was investigated by adding 112 mmol/L glycitein in 100% DMSO to 5 fecal 
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suspensions for final concentrations of 10, 50, 75, 100 and 250 jimol/L glycitein. An 

incubation tube consisting of the fecal suspension without isoflavones, served as a negative 

control. A positive control consisted of BHI media and 250 pmol/L of each isoflavone 

without the fecal suspension. The incubation tubes were flushed with CO?, sealed with 

rubber stoppers, then vortexed for 5 s. One mL of fecal suspension was sampled 

anaerobically from each tube immediately for time 0 and frozen on dry ice. The tubes were 

placed in a 37°C incubator. Samples were taken at 3, 6, 9, 12 and 24 h and frozen. All 

incubations were performed in duplicate. 

Isoflavone Extraction 

THB was added to the thawed fermentation sample for a final concentration of 0.025 

mg/mL to serve as an internal standard. The samples were slowly loaded onto pre

conditioned Cis solid phase extraction cartridges (Waters Corporation Milford, MA). The 

cartridge was washed twice with 2 mL of Milli-Q system water. The isoflavones were eluted 

with 1 mL 80% methanol, filtered through 0.45 pm filters and analyzed by HPLC. 

HPLC analysis 

The HPLC system consisted of a Hewlett Packard 1050 Series. Twenty |iL of sample 

was injected onto a reversed-phase, 5 |im, Cis AM 303 column (250 x 4.6 mm) (YMC Co. 

Ltd. Wilmington, NC). The mobile phase consisted of 0.1% glacial acetic acid in water (A) 

and acetonitrile (B). Solvent B increased from 30 to 50% in 14 min, increased to 100% in 5 

min, and recycled back to 30% in 1 min. The flow rate was 1 mL/min. The wavelength used 

for the detection of isoflavone and metabolite peaks, and for the preparation of isoflavone 

standard curves was 254 and 280 nm. Chem station^ software (Hewlett Packard Company, 
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Scientific Instruments Division, Palo Alto, CA) was used to integrate the peak area responses 

and to evaluate the ultraviolet absorbance spectra. 

Mass Spectrometry analysis 

Analyses of glycitein metabolites were carried out using a Shimadzu 2010 LC-MS 

system (Kyoto, Japan) consisting of a Shimadzu 2010 liquid chromatograph with a dual 

wavelength photodiode array (PDA) detector in series between the chromatograph and a Q-

array-Octapole-Quadrupole mass analyzer. Detection of metabohtes was performed using 

electrospray spray ionization (ESI) in the positive ion mode. The mobile phase for sample 

separation was performed under the same conditions as used for HPLC analysis except the 

flow rate was 0.2 ml/min. The injection volume was 20 uL. Samples were introduced into 

the electrospray interface through an untreated fused-silica capillary. A nitrogen gas flow of 

4.5 L/min was used as the nebulizing and auxiliary gas for the mass spectrometer. The 

parameters applied to MS were as follows: block temperature, 200°C; desolvation 

temperature, 400°C; capilhary voltage, 3.8 kV; cone voltage, 20 V. The mass spectrometer 

was tuned and calibrated for the range of f»/z 100-300. Daidzein, glycitein, 6,7,4'-

trihydroxyflavone and ODMA standards were dissolved in 100% methanol and analyzed to 

obtain authentic mass spectra prior to sample analysis. 

Data Analysis and Statistics 

The rate of disappearance of isoflavones in fecal suspensions was estimated by 

plotting In (% remaining isoflavone) versus time. The slope of this line was the apparent first 

order degradation rate constant. The ratio of peak area of an isoflavone to THE (0.025 

pmol/L) versus the isoflavone concentration was used as an internal standard curve to 

estimate the concentration of isoflavones in the fecal suspensions. Statistical evaluation of 
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degradation rate differences was performed using the SAS system (version 8.1, SAS 

Institute., Cary, NC). Differences between the overall and individual degradation rates of 

isoflavones were estimated using 1-way ANOVA. Isoflavone degradation phenotypes were 

identified using average linkage cluster analysis (29). The statistical significance of all 

analyses was set at a = 0.05. 

Results and Discussion 

The glycitein doses of 10 - 250 pmol/L were studied in our fermentation systems 

because they represent doses of isoflavones that may be seen in the human gut after ingestion 

of soy-containing foods. There were no significant differences in the degradation rates for 

each of the glycitein doses in 10 of the 12 subjects with an average k = 0.32 ± 0.03 h"\ p > 

0.05 (Figure 2). Two subjects showed significantly higher degradation rates at the 10 

pmol/L dose, which can be explained by the low recovery of glycitein at this dose. A plot of 

the natural log of the remaining percentage of each isoflavone against time resulted in a 

straight line for all subjects, with coefficients of correlation ranging from 0.75 - 0.99 (data 

not shown). These findings suggest that isoflavone degradation by gut microflora follow 

apparent first order kinetics, which supports other investigations reporting isoflavone kinetic 

data (13, 30). 

There were no significant changes in the degradation rate of glycitein when it was 

degraded in the presence of genistein and daidzein for 10 of the 12 subjects (average k = 0.30 

± 0.21 h"i vs 0.23 ±0.19 h"\ p = 0.72, data not shown). These data suggest that the 

isoflavones may not compete among each other to be degraded by the gut microflora, and 

different types of bacterial species may degrade each isoflavone. Preliminary studies in our 
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lab have shown different bacterial profiles of high glycitein degraders compared to other 

isoflavone degradation phenotypes (Renouf et al, unpublished data). 

Cluster analysis was performed on the isoflavone degradation rates to observe any 

groupings of similar degradation rates. Three significantly different groupings of degradation 

rates were observed for glycitein. They were called high (k = 0.67 ± 0.14 h"^), moderate (k = 

0.34 ± 0.04 h""i) and low (k = 0.15 ± 0.07 h~i) glycitein degraders (p < 0.0001, Figure 3). 

These phenotypes were observed for genistein and daidzein degradation rates (Table 1). 

These data are supported by Hendrich et al. (31), who reported three isoflavone degradation 

phenotypes (high, moderate and low) from 9 men and 11 women. 

The degradation rate of glycitein with an average k = 0.30 ± 0.21 h"^ was significantly 

lower than genistein with an average k = 0.43 ± 0.44 h~\ p = 0.018, but not different from 

daidzein with an average k = 0.16 ± 0.17 h"\ p = 0.074 (data not shown). We believe that 

this difference is due to structural differences between the 3 isoflavones. It has been 

proposed that the hydroxyl group in the 5^ position on the A ring of the flavonoid structure is 

responsible for genistein's rapid degradation by gut microflora (13, 32). We have shown in 

related studies that flavonoids with hydroxyl groups in the 5, 7 and 4' positions are important 

for rapid microbial degradation (Simons et al, submitted). 

Phenotypic trends were observed in all of the subjects. Subjects 9, 13 and 26 tended 

to have more rapid or high degradation phenotypes and subjects 5, 8, 17 and 18 tended to 

have low degradation phenotypes for all three isoflavones (Table 1). We speculate that these 

differences in degradation phenotypes are because of distinct differences in individual gut 

bacterial populations. Subjects with low m vifro isoflavone degradation phenotypes may 

experience higher isoflavone bioavailabilty vivo, compared to subjects with high 
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isoflavone degradation phenotypes. Zheng et al, 2003 has shown that Asian women with low 

genistein degradation phenotypes experienced greater genistein bioavailability compared to 

Asian subjects with high genistein degradation phenotypes (33). 

We hypothesized that the main glycitein metabolite would be dihydroglycitein based 

on reports identifying dihydrodaidzein and dihydrogenistein as the main metabolites of 

daidzein and genistein, respectively (34). Metabolism studies by Hur et al, 2000 reported 

that glycitein was metabolized to 6,7,4'-trihydroxyisoflavone by Ewbacfgnwrn /zmofwrn (24). 

ZwMOJwm is able to O-demethylate methoxyl derivatives of benzoic acid (35) and 

is found in the digestive tract (36). From these studies we predicted that 6,7,4'-

trihydmxyisoflavone would be one of the metabohtes of glycitein. 

HPLC chromatograms were analyzed for the formation of new peaks in the fecal 

fermentation suspensions over the 24 h period. For 10 of the 12 subjects, 2 new peaks (peaks 

1 and 4) appeared 6 h after incubation at retention times 14.5 and 19.9 min, respectively 

(Figure 6A). Two more new peaks (peaks 2 and 3) appeared after 24 h with retention times 

of 17.5 and 17.7 min, respectively (Figure 6A). Peak 2 was identified in only 2 of the 12 

subjects. Two subjects showed no evidence of new chromatographic peaks during the 24 h of 

fermentation. One subject showed an additional new peak at 15.9 min (peak 5, Figure 6B). 

All other peaks were not associated with glycitein metabolism and appeared in negative 

controls. 

The UV spectra and retention time of peak 1 was identical to a synthetic reference 

standard of 6,7,4'-trihydroxyisoflavone (Figure 7.1, Table 2). However, mass spectral 

analysis using positive electrospray ionization (M+H^) revealed that the molecular weights of 
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peak 1 and 6,7,4'trihydroxyisoflavone were 273 and 271 respectively (Table 2). Based on 

these data, peak 1 was identified as dihydro-6,7,4'-trihydoxyisoflavone. 

The LTV spectra and retention time of peak 5 and daidzein were identical (Figure 7, 

Table 2). MS analysis confirmed that this peak was daidzein with a molecular weight 

(M+if)of255 (Table 2). 

Peaks 2, 3 and 4 were more hydrophobic than glycitein (Figure 6A-B). The UV 

spectrums of peak 2, 3 and 4 were similar to the daidzein microbial metabolites, equol, 

ODMA and dihydrodaidzein respectively (Figure 7). MS analysis for these 3 peaks showed 

molecular weights of 271, 289 and 287, respectively. We identified peaks 2, 3 and 4 as 6-

OMe-equol, 5-OMe-ODMA and dihydroglycitein, respectively (Table 2) based on the MS 

and UV data. 

Glycitein is similar to daidzein structurally with exception of the methoxyl group at 

the 6 position. We did expect to have metabolites that were similar to the metabolites of 

daidzein such as dihydrodaidzein, equol and ODMA (17-19). We did detect dihydroglycitein 

in the fecal incubation mixture, but the major metabolite to appear in all metabolite-

producing subjects was dihydro-6,7,4'-trihydroxyisoflavone at 6 h after incubation. This 

suggests that the first step in glycitein metabolism is reduction to dihydroglycitein, then O-

demethylation to dihydro-6,7,4'-trihydroxyisoflavone. However, we cannot ignore that 

glycitein may first be O-demethylated to 6,7,4'-trihydroxyisoflavone, then further reduced to 

dihydro-6,7,4'-trihydroxyisoflavone, although we did not detect 6,7,4 '-trihydroxyisoflavone 

in our incubation mixtures. The latter pathway would be similar to the microbial metabolic 

pathways of formononetin (7-hydroxy-4-methoxyisoflavone) and biochanin A (5,7-

dihydroxy-4-methoxyisoflavone) (24). 
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Heinonen et al, (21) identified dihydroglycitein in the urine of human subjects fed 3 

soy bars, equivalent to a daily intake of 48.4, 40.2 and 4.1 mg of daidzein, genistein and 

glycitein, respectively, for 2 weeks. These data imply that glycitein was reduced to 

dihydroglycitein. However, Bowey et al, (12) observed that dihydrogenistein and 

dihydrodaidzein were produced in the urine of germ-free rats. They concluded that 

dihydrogenistein, dihydrodaidzein and dihydroglycitein are not products of microbial 

metabolism. Perhaps, glycitein may be converted to dihydroglycitein by intestinal bacteria 

and liver enzymes. 

The metabolite, 5-OMe-ODMA, most likely results from C ring cleavage of 

dihydroglycitein which is consistent with bacterial C-ring cleavage studies of daidzein and 

genistein (15,16). Heinonen et al (21) also identified 5-OH-ODMA in addition to 5-OMe-

ODMA in human urine which suggested direct C-ring cleavage of dihydro-6,7,4'-

trihydroxyisoflavone or demethylation of 5-OMe-ODMA. We did not detect 5-OH-ODMA 

in our fecal fermentation mixtures during the 24 h incubation period. 

Production of daidzein from glycitein would result from direct demethoxylation of 

glycitein at the 6 position. However, only 1 subject produced daidzein in this study. 

Additionally, bioavailability studies in our lab have shown that daidzein was produced in 1 

out of 10 hamsters that were fed purified glycitein (Lee et al, unpublished data). Setchell et 

al (37) reported that there was a small rise in the daidzein plasma concentration when glycitin 

(glycitein-7-O-P-D-glucopyranose) was orally given to humans. Taken together, these results 

suggest that demethoxylation of glycitein may not be a major pathway of metabolism in 

humans and hamsters. 
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We observed the m vifro degradation of daidzein for each subject and did not observe 

any equol production. Due to this observation, we speculated that we would not see any 

equol-like metabolites of glycitein. We assumed that if a subject is not capable of producing 

equol from daidzein, they were not able to produce an equol-like metabolite from glycitein. 

However, our ;n vifro fecal fermentation models are poor indicators of equol-producer 

phenotypes, because equol is only produced in response to chronic soy ingestion over a 

period of at least 3 days (38, 39). Therefore, we may have had equol-producers among the 12 

subjects. We proposed that 6-methoxy-equol and 6-hydroxy-equol would be possible 

metabolites of glycitein and we were able to identify 6-methoxy-equol in 2 of the subjects. 

Based on the metabolites identified in these studies, we have proposed several microbial 

metabolism pathways for glycitein shown in figure 6. The major pathways of glycitein 

microbial metabolism are reduction to dihydroglycitein, then demethylalion to produce 

dihydro-6,7,4'-trihydroxyisoflavone, or C ring cleavage of dihydroglycitein to produce 5'-

OMe-ODMA. Minor pathways include direct demethoxylation of glycitein to daidzein, and 

reduction of dihydroglycitein to 5'-OMe-equol. Alternative pathways of glycitein microbial 

metabolism not observed in these studies are demethylation of glycitein to 6,7,4'-

trihydroxyisoflavone, reduction to dihydro-6,7,4'-trihydroxyisoflavone, then either C ring 

cleavge to 5'-OH-ODMA, or reduction to 6-OH-equol. 

It was interesting that we found dihydro-6,7,4'-trihydroxyisoflavone as a microbial 

metabolite of glycitein because its precursor 6,7,4' -trihydroxyisoflavone has been identified 

in fermented soybeans and tempe (40). It is believed that the bacteria used in the tempeh 

fermentation process, BreW&acfenw/M and Micrococci? are responsible for 

the conversion of glycitein and daidzein to other polyhydroxylated compounds including 
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6,7,4 '-trihydroxyisoflavone (41,42) Kulling et al (43,44) has shown that daidzein was 

converted to 6,7,4'-trihydroxyisoflavone from oxidative metabolism reactions by rat liver 

microsomes. 

The estrogenic activity of isoflavones may be affected by gut microbial metabolism. 

For example, equol, a metabolite of daidzein, has been reported to be more estrogenic than 

daidzein (45). p-Ethyl phenol, a metabolite of genistein, has no estrogenic activity even 

though genistein possesses potent estrogenic activity and numerous other biological effects 

(46-48). Previous work in our lab has shown that glycitein possessed a lower m Wfro 

estrogen receptor-binding affinity compared to genistein, but gave a higher estrogenic 

response in an m vm? mouse uterine enlargement assay (4). This higher estrogenic response 

may have resulted from the higher bioavailability of glycitein compared to genistein, or the 

formation of glycitein metabolites in the m vivo assays that possess higher estrogenic 

potencies than the parent compound. 6,7,4'-Trihydroxyisoflavone has been shown to exhibit 

estrogenic activity (49) but binds the estrogen receptor beta with little or no affinity (49,50). 

It would be interesting to determine the estrogenic properties of the other glycitein 

metabolites. Studies in our lab have shown that the gut microflora play a significant role in 

the bioavailability of isoflavones (13,25,33,51). Plasma daidzein and genistein concentrations 

were negatively correlated with the daidzein and genistein microbial degradation rate 

constants, respectively, (33) suggesting that increased isoflavone intestinal microbial 

degradation, reduced the amount of intact isoflavones appearing in plasma after absorption. 

Additionally, daidzein and glycitein were more bioavailable than genistein, as reflected in 

urinary excretion as a percentage of ingested dose, because daidzein and glycitein were 

degraded at a much slower rate compared to genistein (25). 
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In this study, we have found that glycitein was degraded according to first order 

kinetics by human gut microflora, but at a slower rate compared to genistein. We found that 

there was significant interindividual variation in glycitein degradation but the degradation 

rates were segregated into 3 significantly different groups. We identified 3 major glycitein 

metabolites (dihydroglycitein, dihydro-6,7,4'-trihydroxyisoflavone and 5-OMe-ODMA) in 

10 of 12 subjects, 6-OMe-equol in 2 subjects and daidzein in 1 subject. The significance of 

the glycitein metabolites has yet to be determined. 
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Table 1. Cluster Analysis of Subjects' Isoflavone Degradation Rates* 

Degradation rate k (h Subject ny 

Isoflavone High Moderate Low High Moderate Low 

glycitein 0.67±0.14 0.34±0.04 0.15±0.07 13,9 26,3,11,2 6,8,18,17,4,5 

daidzein 0.34±0.04 0.17±0.04 0.03±0.02 9,26 6,13,2,3,11,4 8,5,18,17 

genistein 1.54<" 0.77±0.0l 0.17±0.08 13 26,2,3 8,9,5,17,11,4,18,6 

"Degradation phenotypes of subjects. Subjects separated into 3 significantly different groups 
for each isoflavone, named high, moderate and low degraders (p<0.0001). Degradation 
rates expressed as average ± standard deviation of the mean. ^Whole numbers shown are 
subjects' identification number and are listed in descending degradation rate order. ^Standard 
deviation could not be determined from a measurement of only 1 subject's degradation rate. 
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Table 2. HPLC and MS characteristics of glycitein metabolites and standards" 

Standard and Metabolite 

ID 

Retention 

Time (min) 

Molecular 

Weight [M+H+f 
Proposed compound^ 

6,7,4'-
trihydroxyflavone 

14.5 271 
6,7,4'-

trihydroxyisoflavone 

daidzein 15.9 255 daidzein 

1 14.5 273 
dihydro-6,7,4 

trihydroxyisoflavone 

2 17.5 271 6-OMe-equol 

O 17.7 289 
5-OMe-O-

J 17.7 289 
desmethylangolensin 

4 19.9 287 dihydroglycitein 

5 15.9 255 daidzein 

*HPLC retention time and molecular weight from mass spectrometry (MS) analysis for 
standards and each metabolite peak. ''Molecular weight were determined by electrospray 
spray ionization in the positive ion mode and are represented as M+l. ^Proposed compounds 
are based on MS data, HPLC retention time and UV spectral analysis. 
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/rOH 

Glycitein: R-|=H, Rg=OCHg, Rg=OH 
Daidzein: Ri=H, Rg=H, Rg=OH 
Genistein: Ri=OH, R2=H, Rg=OH 

Figure 1. Soy isoflavone structures, substitution patterns and numbering system. A: A ring, 
B: B ring, C: C ring. 
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Figure 2. /n vifro human microbial degradation rates of glycitein at 10, 50, 75, 100 and 250 
p,mol/L. Error bars represent standard deviation from the mean. 



www.manaraa.com

109 

î 
c 
o 
% 
"O m 
g 

0.8-

0.7 
0.6-

0.5-
0.4-
0.3-
0^ 

0.1 

0.& 

high 

rh 

moderate 
A 

A T T  low 
_A_ 

Ù CL 
13 9 26 3 11 2 6 8 18 17 4 5 

Subject ID 

Figure 3. Statistical cluster analysis of subjects' glycitein degradation rates. Subjects 
segregated into 3 different groups represented as high, moderate and low glycitein degraders 
(p < 0.0001). Error bars represent standard deviation from the mean. 
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J ^ ;T / 

glycitein 

Figure 4. HPLC chromatograms of fecal fermentation extracts after 24 h incubation with 
250 nmol glycitein in 2 subjects. Numbers shown are for metabolite peak identification. All 
other peaks were not associated with glycitein metabolism and appeared in negative controls. 
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Figure 5. Ultraviolet spectra of metabolite peaks and known standards. Spectra in black are 
from metabolite peaks and spectra in gray are from standards. Numbers shown are metabolite 
peak identification numbers. (1) was compared to 6,7,4 '-trihydroxyisoflavone, (2) was 
compared to equol, (3) was compared to ODMA, (4) was compared to dihydrodaidzein and 
(5) was compared to daidzein. 
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Figure 6. Pathways of anaerobic glycitein metabolism in the human gut. 
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HUMAN GUT MICROBIAL DEGRADATION OF FLAVONOIDS: STRUCTURE-
FUNCTION RELATIONSHIPS 

A paper accepted by the Journal of Agricultural and Food Science 

Andrean L. Simons, Mathieu Renouf, Suzanne Hendrich and Patricia A. Murphy 

Abstract 

The relationship between chemical structure and gut microbial degradation rates of 14 

flavonoids, flavone, apigenin, chrysin, naringenin, kaempferol, genistein, daidzein, daidzin, 

puerarin, 7,4'-dihydroxyflavone, 6,4'-dihydroxyflavone, 5,4'-dihydroxyflavone, 5,3'-

dihydroxyflavone and 4'-hydroxyflavone, was investigated by anaerobically fermenting the 

flavonoids with human gut microflora (n=ll subjects). Degradation rates for the 5,7,4'-

trihydroxyl-flavonoids, apigenin, genistein, naringenin and kaempferol, were significantly 

faster than the other structural motifs. Genistein degraded the fastest of all flavonoids in all 

subjects. Puerarin was resistant to degradation by the gut microflora. Extensive degradation 

of flavonoids by gut microflora may result in lower overall bioavailability than those 

flavonoids that are slowly degraded because rapidly degrading flavonoids are less likely to be 

absorbed intact. 

Introduction 

Flavonoids are a large group of polyphenolic compounds that are widely distributed 

in all plants. Fruits, vegetables and beverages (fruit juices, wine, tea and coffee) are major 

sources of flavonoids in the human diet and over 4000 of these compounds have been 

reported to date (1). Adequate intakes of fruits and vegetables are reported to be associated 

with reduced risks of cardiovascular disease (2) and cancer (3). These observations may be 

attributed, in part, to the antioxidant effects of flavonoids (4-7). 
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Flavonoids are diphenylpropanes consisting of 2 phenolic rings, A and B connected 

by a 3 carbon unit, which along with an oxygen atom, forms the heterocyclic C ring. 

Flavonoids are systematically classified into subgroups including flavones, isoflavones, 

flavonols, and flavanones, which are characterized by differences in their C ring structure (8). 

Differences within these flavonoid subgroups are characterized by substitutions of hydroxyl, 

methoxyl, methyl and glycosidic groups on the A, B and C rings (Figure 1). Flavonoids are 

found in foods mainly as O-glycosides. Glucose is the most common sugar moiety but other 

glycosidic units can include galactose, rhamnose, arabinose and xylose. The O-^-glucosidic 

bonds of flavonoids including the isoflavones daidzin (daidzein-7-O-P-D-glucopyranoside), 

genistin and glycitin are hydrolyzed in the gut by microbial and mammalian P-glucosidases 

to their aglucons, daidzein, genistein, and glycitein, respectively (9-13). 

The absorption and metabolism of flavonoid aglucons in humans is not fully 

understood, but the aglucons may be absorbed, undergo first pass hepatic metabolism (14) 

and be excreted in the urine or bile (15). Intestinal bacteria can further catabolize the 

flavonoid aglucons into smaller phenolic compounds that can be reabsorbed by enterohepatic 

recirculation via the bile duct, or catabolized completely for energy (13,15-19). 

The chemical structure of flavonoids determines the extent and rate of absorption in 

the gut as reflected in the amounts of flavonoids found intact in the urine and plasma (20-23). 

Previous studies by Xu et al, (20) have shown that the rate of isoflavone degradation by 

human gut microflora depends on the structure of the isoflavone. Genistein, which possesses 

a 5-hydroxyl, was rapidly degraded compared to daidzein which does not have a 5-hydroxyl 

group. Lin et al, (24) has reported that flavonoids with methoxyl groups, such as diosmetin 

(5,7,3'-trihydroxy-4'-methoxyflavone), hesperetin (5,7,3'-trihydroxy-4-methoxyflavanone) 
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and wogonin (5,7-dihydroxy-8-methoxyflavone), were less rapidly degraded compared to 

flavonoids without methoxyl groups. 

Microbial degradation of flavonoids with C-C-linked glucose groups, such as 

puerarin (daidzein-8-C-P-D-glucopyranoside), has not been well studied. Puerarin is 

structurally similar to daidzin but with the glucose group bound directly to the C-8 position 

of the A ring. Puerarin is the major isoflavone found in kudzu (Pwerana Zo6afa), a plant 

used in traditional Chinese medicine and as a nutraceutical (25). Puerarin can be found in 

commercial isoflavone dietary supplements where kudzu was used as the sole source or in 

combination with soy isoflavones. 

The purpose of this study was to determine the structural characteristics of flavonoids 

that are important for optimal degradation by the human gut microflora. This study 

compared the relationship of the chemical structure of 14 flavonoids: flavone, apigenin, 

chrysin, naringenin, kaempferol, genistein, daidzein, daidzin, puerarin, 7,4'-

dihydroxyflavone, 6,4' -dihydroxyflavone, 5,4' -dihydroxyflavone, 5,3' -dihydroxyflavone and 

4'-hydroxyflavone, with their degradation rate by gut microflora from human subjects. 

Materials and Methods 

Chemicals 

Genistein was synthesized according to modification of Chang et al, (26). Daidzein 

and 2,4,4'-tnhydroxydeoxybenzoin (THE) were synthesized using the method of Song et al, 

(27). Flavone, apigenin, chrysin, naringenin, kaempferol, puerarin, 7,4'-dihydroxyflavone, 

6,4'-dihydroxyflavone, 5,4'-dihydroxyflavone, 5,3'-dihydroxyflavone and 4'-

hydroxyflavone were from Indofine Chemical Co., Inc (Hillsborough, NJ). Daidzin was 

purchased from LC Labs (Wobum, MA). HPLC grade acetonitrile, methanol, acetic acid, 



www.manaraa.com

dimethyl sulfoxide (DMSO) and all other chemicals were from Fisher Scientific (Fairlawn, 

NJ). Milli-Q system (Millipore Co., Bedford, MA) HPLC grade water was used to prepare 

all solutions. 

Subject protocol 

Approval of the study design was obtained from the Iowa State University Human 

Subjects Research Committee in 2003. Three men and eight women volunteered from Iowa 

State University and the surrounding Ames area. The selection criteria required that the 

subjects be in good health and not taking any medication. The subjects' ages ranged from 24 

to 53 y (mean age = 33.8 ± 3.2 y) with a body mass index (BMI) of 20.9 to 25.8 kg/m% (mean 

BMI = 23.9 ± 0.9 kg/nf) respectively. The ethnicities of the subjects included 5 Caucasians, 

3 African Americans, 1 Chinese immigrant, 1 Asian-Indian and 1 Latino. All subjects 

provided one fresh fecal sample in sealed sterile containers (Sage Products Inc., Crystal 

Lake, IL) that was used immediately. 

Flavone Fermentation 

Brain-heart infusion (BHI) broth media (Difco Laboratories, Detroit, MI) was 

prepared according to Zheng et al, (21). All flavonoid aglucons were dissolved in 100% 

DMSO. One and a half grams of freshly voided feces were transferred to incubation test 

tubes (Fisher Scientific, Fairlawn, NJ) containing 25 mL BHI. The flavonoids flavone, 4'-

hydroxyflavone, 5,4'-dihydroxyflavone, 6,4'-dihydroxyflavone, 7,4'-dihydroxyflavone, 5,3'-

dihydroxyflavone, chrysin, apigenin, genistein, naringenin, kaempferol and daidzein were 

added to the incubation test tubes for a final concentration of 78.7 |imol/L. The 

fermentations were performed in duplicate. The incubation test tubes were flushed with CO:, 

sealed with rubber stoppers and autoclave tape, then vortexed for 5 s. One mL was taken 
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anaerobically from each test tube immediately for time 0 and frozen on dry ice. The tubes 

were placed in a 37°C incubator. One mL aliquots were sampled from the incubation test 

tubes at 3, 6, 9,12 and 24 h and frozen. Negative controls consisted of the fecal suspension 

without flavonoids. Microbial degradation by the fecal suspension was confirmed by 

positive controls, which consisted of BHI media and flavonoids without the fecal suspension. 

Isoflavone Glucoside Fermentation 

Stock solutions of 10 mmol/L puerarin and 5.4 mmol/L daidzin were prepared in 80% 

methanol. Two g of fresh feces from 2 subjects were transferred to incubation test tubes with 

27 ml BHI. Puerarin and daidzin stock solutions were each added to give a final 

concentration of 4.8 pmol/L. The control incubation contained no isoflavones. Incubations 

were performed according to the method stated above for flavonoids. 

Flavonoid Extraction 

THB, as an internal standard, was added at 100 |imol/L to the thawed fermentation 

sample and slowly loaded onto pre-conditioned Cis solid phase extraction cartridges (Waters 

Corporation Milford, MA). The cartridge was washed twice with 2 mL of Milli-Q system 

water. The flavonoids were eluted with 1 mL 80% methanol, filtered through 0.45 pm filters 

and analyzed directly by HPLC. 

HPLC analysis 

The HPLC system consisted of a Hewlett Packard 1050 Series. Twenty pL of sample 

was injected onto a reversed-phase, 5 |im, Cis AM 303 column (250 x 4.6 mm) (YMC Co. 

Ltd. Wilmington, NC). The mobile phase consisted of 0.1% glacial acetic acid in water (A) 

and 0.1% glacial acetic acid in acetonitrile (B). Solvent B increased from 30 to 50% in 8 

minutes, increased to 100% in 8 minutes and held for 3 minutes. The gradient was recycled 
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back to 30% in 1 min for the next run. The flow rate was 1 mL/min. The wavelengths used 

for the preparation of standard curves, detection and quantification of flavonoid peaks were 

254 and 292 nm. The minimum detection limit of all flavonoids ranged from 5-7 nM. The 

gradient elution used to separate puerarin and daidzin was of the method of Song et al (27). 

Chem station^^ software (Hewlett Packard Company, Scientific Instruments Division, Palo 

Alto, CA) was used to integrate the peak area responses and to evaluate the ultraviolet 

absorbance spectra. 

Data Analysis 

The ratio of peak area of a flavonoid to THE (100 |imol/L) versus the flavonoid 

concentration was used as an internal standard curve to estimate the concentration of 

flavonoids in the fecal fermentations. The rate of disappearance of flavonoids in fecal 

fermentation mixtures was estimated by plotting In (% remaining flavonoid) versus time. 

The negative slope of this line was the apparent first order degradation rate constant. 

Statistical evaluation of degradation rate differences was performed using the SAS system 

(version 8.1, SAS Institute., Cary, NC). Differences between the overall and individual 

degradation rates of flavonoids were estimated using 1-way ANOVA. Flavonoid degradation 

phenotypes were identified using cluster analysis (28). The statistical significance of all 

analyses was set at a = 0.05. 

Results and Discussion 

The structure of four flavonoid subgroups, including the A, B and C rings and the 

substitution patterns of each flavonoid analyzed are shown in figure 1. Degradation rate 

differences due to different A ring substitution patterns were investigated by comparing the 

microbial degradation rates of 4'-hydroxyflavone, 5,4'-dihydroxyfIavone, 6,4'-



www.manaraa.com

119 

dihydroxyflavone and 7,4'-dihydroxyflavone. There were no differences when the 

degradation rates of flavonoids with A ring variations were compared across all subjects with 

an average k = 0.060 ± 0.053 h"' (p = 0.30) (Figure 2). 

Degradation rate differences due to different hydroxylation patterns on the B ring of 

flavonoids were analyzed by pairwise comparison of flavone and 4'-hydroxyflavone, 5,3'-

dihydroxyflavone and 5,4'-dihydroxyflavone, and chrysin (5,7-dihydroxyflavone) and 

apigenin (5,7,4'-trihydroxyflavone) degradation rate constants. There were no differences 

between the degradation rates of flavone and 4' -hydroxyflavone with an average of k = 0.065 

± 0.061 in (p = 0.83), and between 5,4'-dihydroxyflavone and 5,3'-dihydroxyflavone with 

an average of k = 0.071 ± 0.067 m (p = 0.42). However, the degradation rate of apigenin 

with an average k = 0.43 ± 0.27 IT* was significantly faster than chrysin with an average k = 

0.13 ± 0.11 h"i (p = 0.01) suggesting that the hydroxyl group at the 4' position was important 

for rapid microbial degradation but only if additional hydroxyl groups were present at the 5, 

and 7 positions (Figure 2). 

The degradation rate differences due to C ring substitution were compared by 

analyzing the degradation rates of apigenin (5,7,4'-trihydroxyflavone), genistein (5,7,4'-

trihydroxyisoflavone), naringenin (5,7,4'-trihydroxyflavanone) and kaempferol (3,5,7,4'-

tetrahydroxyflavone). There were no differences between the degradation rates of apigenin, 

genistein, naringenin and kaempferol with an average k = 0.38 ± 0.25 h"^ (p > 0.05) (Figure 

2). These data suggested that the absence of the 2-3 double bond, as found in naringenin, or 

the addition of a 3-OH group, as in kaempferol, did not affect the rate of microbial 

degradation. 
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Apigenin (5,7,4'-trihydroxyflavone) and 7,4'-dihydroxyflavone are the flavone 

analogues to genistein (5,7,4'-trihydroxyisoflavone) and daidzein (7,4'-

dihydroxyisoflavone), respectively. The average degradation rate of genistein was not 

different from apigenin with an average k = 0.45 ± 0.29 h^ (p = 0.13) and the average 

degradation rate of daidzein was not different from 7,4'-dihydroxyflavone with an average k 

= 0.076 ± 0.063 h~i (p = 0.72) (Figure 2) suggesting that the attachment of the B ring at the 

C-3 position for isoflavones, instead of at the C-2 position for flavones, does not affect the 

rate of bacterial degradation. 

Genistein, apigenin, kaempferol and naringenin were the most rapidly degraded 

flavonoids compared to all other flavonoids examined (p < 0.0001) (Figure 2). These 

flavonoids all have a common structure with hydroxyl groups at the 5, 7 and 4' positions. 

This observation suggested that these 3 hydroxyls were important for optimal flavonoid 

degradation. It is evident from the results reported here that any flavonoid missing any one 

of the 5-, 7-, or 4'- hydroxyls degraded slower than genistein, apigenin, naringenin and 

kaempferol. 

Lin et al, 2003, was the only other investigation of the relationship between chemical 

structures and microbial degradation of flavonoids (24). Thirteen flavonoids were analyzed 

including genistein, apigenin, naringenin, kaempferol and daidzein. The other flavonoids 

included monn (3,5,7,2 ' ,4 ' -pentahydroxyflavone), luteolin (5,7,3 ' ,4 ' -tetrahydroxyflavone), 

quercetin (3,5,7,3',4'-pentahydroxyflavone), wogonin (5,7-dihydroxy-8-methoxyflavone), 

baicalein (5,6,7-trihydroxyflavone), hesperetin (5,7,3'-tiihydroxy-4-methoxyflavanone), 

diosmetin (5,7,3'-trihydroxy-4'-methoxyflavone) and neophellamuretin (3,5,7,4'-

tetrahydroxy-8-isoprenylflavanone). Fecal incubations from rabbits, rats and 3 humans were 
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used. Lin et al, 2003 observed that wogonin and diosmetin, which possess methoxyl groups, 

were the least degraded flavonoids in all 3 species, and concluded that the presence of 

methoxyl groups on the A or B ring rendered the flavonoid resistant to microbial degradation 

(24). Our preliminary experiments have shown similar results in which glycitein (7,4'-

dihydroxy-6-methoxyisoflavone), which possesses a 6-methoxyl group, was degraded at a 

slower rate than genistein, k = 0.30 ± 0.21 h"' versus 0.43 ± 0.44 m (p < 0.18) in fecal 

fermentations from 12 human subjects. Additional evaluation of the Lin et al data, however, 

revealed that all of the flavonoids with 5, 7 and 4' hydroxyl groups degraded faster than the 

flavonoids that were lacking all these hydroxyls in all three species, which is in agreement to 

our study. The only exception to this generalization was observed with baicalein (5,6,7-

trihydroxyflavone), which had no hydroxyl groups at the 4' position. Baicalein was found to 

be extensively degraded by human fecal microorganisms, but not rabbit or rat fecal 

microorganisms. Similarly, we found that chrysin (5,7-dihydroxyflavone), which has no 4'-

hydroxyl group degraded significantly faster than flavonoids lacking all three 5,7 and 4' 

hydroxyl groups (Figure 2). We speculate that flavonoids with 5 and 7 hydroxyls are 

moderately degraded by human gut microorganisms, but addition of the 4' hydroxyl 

significantly enhances the microbial degradation rate. 

Naringenin and kaempferol are structurally similar to apigenin except that naringenin 

lacks the 2-3 double bond in the C ring and kaempferol has an additional hydroxyl group 

attached to the C-3 position of the C ring. The lack of significant differences between the 

average degradation rates of apigenin, naringenin and kaempferol suggests that the 2-3 

double bond and a 3-OH group on the flavonoid structure were not necessary for microbial 

degradation as long as the flavonoid possessed hydroxyl groups at the 5, 7 and 4' positions. 
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Our results support the work of Lin et al, (24) who reported that these features did not affect 

the degradation rate. 

Puerarin (daidzein-8-C-P-D-glucopyranoside) and daidzin (daidzein-7-O-P-D-

glucopyranoside) are the two predominant isoflavones found in kudzu root. Daidzin was 

rapidly hydrolyzed to daidzein with a k = 1.15 ± 0.01 h"^ and disappeared from the fecal 

fermentation mixture within 4 h of incubation with fecal microorganisms of 2 subjects. 

Daidzein was detected at 2 h after incubation with daidzin (Figure 3A). In contrast, puerarin 

was not hydrolyzed after 48 h with no daidzein being detected in the puerarin incubation 

(Figure 3B). These results suggest that C-glucosides are resistant to p-glucosidase activity 

compared to O-glucosides. It is possible that the position and type of glycosidic linkages of 

flavonoid glycosides alter their rate of hydrolysis by the gut microflora. 

Kim et al, (29) reported that puerarin was converted to daidzein after incubation with 

fresh feces from a single subject after 48 h, which is in contrast to our observations. No 

concentration of daidzein formed from puerarin in the Kim et al study was reported, 

however. Yasuda et al., (30) reported that the urine of rats orally dosed with 100 mg/kg of 

pure puerarin, contained unchanged puerarin, daidzein and the glucuronide and sulfate 

conjugates of daidzein and puerarin. The total amount of urine metabolites excreted in 48 h 

was 3.63% of the puerarin administered, with daidzein comprising less than 0.5%. These 

data suggest that puerarin might be hydrolyzed to daidzein, but not in significant amounts 

based on the percentage recovered in urine. Less than 1% of unchanged puerarin was 

recovered in the urine and bile suggesting that puerarin is minimally absorbed intact in the 

gut (30, 31). The Yasuda et al, (30) data conflicts other studies reporting that flavonoid 

glucosides must be hydrolyzed before absorption in the gut. (32-36). 
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There was considerable variability among the subjects in their degradation rates for 

each flavonoid (pcO.OOOl). All subjects' degradation rates for each flavonoid were analyzed 

using cluster analysis. Cluster analysis is a statistical program that is able to group together 

similar degradation rates. The subjects segregated into 3 different degradation rate groupings 

for each flavonoid. We described these groups as phenotypic differences in the subjects and 

called them high, moderate and low flavonoid degraders (Table 1). Most of the subjects 

remained in their respective flavonoid degradation phenotype groups for all flavonoids 

examined suggesting that each phenotype may exist as a stable characteristic in these 

subjects (Table 1). These phenotypes may represent differences in gut microbial populations 

or enzyme activities. High flavonoid degraders would be more likely to produce flavonoid 

metabolites as a result of anaerobic metabolism in the gut, and thus absorb less intact 

flavonoids across the intestinal epithelium. On the other hand, low flavonoid degraders may 

produce fewer flavonoid metabolites but have greater probability to absorb intact flavonoids. 

Additionally, low flavonoid degraders may experience greater "in situ" activity from 

flavonoid aglucons compared to high flavonoid degraders. 

We have not determined why the human gut microorganisms prefer to degrade 5,7,4'-

trihydroxylflavonoids. Synthesis of flavonoids in plants comes from resorcinol or 

phloroglucinol synthesis from the acetate pathway. This pathway produces the 5,7 

hydroxylation pattern in the A ring. The shikimate pathway produces the B ring and results 

in 4'-, 3',4'-, and 3',4',5'- hydroxylation patterns (37). Since genistein, apigenin, naringenin 

and kaempferol are the flavonoid aglucons found predominantly in the food supply, we 

believe that flavonoids with 5,7,4'-hydroxylation patterns dominate in nature, and the human 
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gut microflora are more exposed to these dietary compounds and have adapted to metabolize 

them. 

We observed that hydroxyl groups at the 5, 7 and 4' positions of flavonoids are 

important structural characteristics for optimal flavonoid degradation by human gut 

microflora. The flavonoid degradation rate ranking is: genistein = apigenin = kaempferol = 

naringenin > chrysin > daidzein = 5,3 ' -dihydroxyflavone = 5,4 ' -dihydroxyflavone = 6,4'-

dihydroxyflavone = 7,4' -dihydroxyflavone = 4 ' -hydroxyflavone = flavone. These 

observations have great implications for evaluating the potential bioavailability of 

flavonoids. A prediction of the rate of flavonoid degradation by human gut microorganisms 

can be made by evaluating the structure of a flavonoid. Genistein, apigenin, naringenin and 

kaempferol were degraded more rapidly than the other flavonoids without hydroxyl groups at 

the 5, 7 and 4' positions. Therefore, genistein, apigenin, naringenin and kaempferol may not 

be as bioavailable in the colon compared to more slowly degraded flavonoids, because they 

have less time to be absorbed before they are degraded by the gut microflora. However, the 

degradation products of genistein, apigenin, naringenin and kaempferol may potentially be 

bioactive metabolites of interest. The other slowly degraded flavonoids examined may be 

more bioavailable because the gut microflora degraded them at a slower rate, which gives 

these flavonoids a greater opportunity to be absorbed. 
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Table 1. Cluster Analysis of Subjects' Degradation Rates and Segregation into Degradation 
Phenotypes Groupings" 

Degradation rate k ( 1/b)^ Subject ID" 

Flavonoid High Moderate Low High Moderate Low 

flavone 0,18±0.02 0.06±0.02 0.02±0.0l 13,26 5,8,9,18 2,3,4,6,17 

4 ' - 0.16±0.03 0.06±0.02 0.02±0.0l 9,13,26 5,18 2,3,4,6,8,17 
hydroxyflavone 

5,3'- 0.16±0.03 0.06±0.02 0.01 ±0.00 13,17,26 4,5,8,9,18 2,3,6 
dihvdroxy flavone 

5,4'- 0.21±0.04 0.10+0.03 0.02+0.02 17,26 5,13 2,3,4,6,8,9,18 
dihydroxyflavone 

6,4'- OH ±0.02 0.04±0.01 0.02+0.00 13,17,26 2,5 18 3,4,6,8,9 
dihydroxyflavone 

7,4'- 0.18±0.05 0.08±0.03 0.02±0.01 17,26 4,13 2,3,5,6,8,9,18 
dihydroxyflavone 

chrysin 0.28±0.06 0.15±0.03 0.03+0.02 9,13,26 4,5,8 2,3,6,17,18 

daidzein 0.17±0.02 0.12±0.01 0.04±0.01 9,13,26 2,4,17 3,5,6,8,18 

genistein 1.5410.00 0.77±0.00 0.18±0.08 13 2,3,26 4,5,6,8,9,17,18 

apigenin 0.77±0.00 0.53±0.03 0.17±0.07 9,13,26 4,5,8 2,3,6,17,18 

naringenin 0.77±0.00 0.19±0.01 0.08±0.04 13,26 4,5,6,8,9,17,18 2,3 

kaempferol 0.70±0.10 0.47±0.07 0.15±0.07 13,26 2,8,9 3,4,5,6,17,18 

"Degradation phenotypes of subjects. Subjects separated into 3 significantly different groups 
for each flavonoid, named high, moderate and low degraders (p<0.0001). ^Degradation rates 
expressed as average ± standard error of the mean. ^Whole numbers shown are subjects' 
identification number. 
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Figure 1. Flavonoid subgroup structures and substitution patterns. Ogl: 7-O-fl-D-
glucopyranose, Cgi: 8-C-|3-D-glucopyranose. A: A ring, B: B ring, C: C ring 
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hydmxyflavone, 54F: 5,4'-dihydroxyfl avone, 64F: 6,4'-dihydroxyflavone, 74F: 7,4'-
dihydroxyflavone, GEN: genistein, API: apigenin, NAR: naringenin, KAE: kaempferol, 53F: 
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significantly different (p<0.05, n = 11). Error bars represent mean square error. 
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Figure 3. Human microbial degradation of isoflavone glucosides versus time in 2 subjects. 
A: Disappearance of daidzin and appearance of daidzein. B: Stability of puerarin over time. 
Mean square error at each time point was < 0.07. 
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BIOAVAILABILITY OF FLAVONOIDS AND THEIR CORRELATION WITH 
HUMAN GUT MICROBIAL DEGRADATION 

A paper to be submitted to the Journal of Nutrition 

Andrean L. Simons, Mathieu Renouf, Sun-Ok Lee, Patricia A. Murphy and Suzanne 

Hendrich 

Abstract 

The relationship between flavonoid structure, gut microbial degradation m Wfro and 

human bioavailability m wvo was determined. Gut microbial fermentations with fresh feces 

from 33 healthy subjects (20 male, 13 female) were conducted with 15 flavonoids, genistein, 

apigenin, naringenin, kaempferol, luteolin, quercetin, myricetin, hesperetin, chrysin, flavone, 

daidzein, glycitein, 5,4'-dihydroxyflavone, 6,4 '-dihydroxyflavone, 7,4'-dihydroxyflavone, 

5,3'-dihydroxyflavone, over a 24 h period. Flavonoids with 5, 7 and 4' - hydroxyl groups 

genistein, apigenin, naringenin, luteolin, kaempferol and quercetin, rapidly disappeared from 

the fermentation mixtures compared to the other flavonoids (k = 0.46 ± 0.10 h^ vs. 0.07 ± 

0.02 h~\ p < 0.0001). The methoxylated flavonoids hesperetin and glycitein were rapidly 

demethylated and disappeared from the fermentation mixtures with an average k = 0.24 ± 

0.21 h"\ Human bioavailability of flavonoids was investigated in 10 volunteers (5 men and 5 

women) in 3 feedings separated by a one week washout period. Subjects ingested 28 mg (104 

pmol) genistein and 16 mg (62 ^mol) daidzein from soymilk, 422 mg (1549 pmol) 

naringenin and 8 mg (26 ^mol) hesperetin from grapefruit juice and 115 mg (381 pimol) 

quercetin from sautded onions. Blood and mine samples were collected over a 24 h period 

and all feces were collected until the excretion of a carmine red dye, which was ingested 

along with the test meal. Peak plasma concentrations of flavonoids analyzed over the 24 hour 
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period ranged from 0.01 - 1 |iM. The bioavailability, calculated as urinary excretion as the 

percentage of ingested dose, was significantly lower for the rapidly degraded flavonoids, 

naringenin (3.2 ± 1.7 %), genistein (7.2 ± 4.6 %), hesperetin (7.3 ± 3.2 %) and quercetin (5.6 

± 3.7 %) compared to a slowly degraded flavonoid, such as daidzein (43.4 ± 15.5 %, p = 

0.02). These data reveal that the chemical structure of flavonoids affect their gut microbial 

degradation rate and thus their overall bioavailability. 

Introduction 

Flavonoids are polyphenolic compounds that are widely distributed in foods of plant 

origin (1). Dietary intake levels in humans range from a few hundred mg to 1 g (2). 

Flavonoids in fruits and vegetables have been suggested to be responsible for lowering the 

risk of steroid dependent cancers (3) and heart disease (4) in populations consuming high 

amounts of flavonoids. Over 5000 flavonoid compounds have been identified to date and are 

divided into subclasses, which differ structurally in their heterocyclic C ring (5). These 

flavonoid subclasses include flavones, flavanones, flavonols and isoflavones. Commonly 

consumed flavonoids in these flavonoid subclasses are illustrated in figure 1. Substitution 

patterns on the A and B rings with hydroxyl, methyl, methoxyl, O and C-sugars, acyl, prenyl, 

sulphate and glucuronide groups provide additional structural variation in each flavonoid 

subclass (5). 

Flavonoid aglucons have been shown to be absorbed across the intestinal wall and 

conjugated in the liver with phase II enzymes such as UDP-glucuronosyltransferase, 

sulfotransferase and catechol-O-methyltransferase (6). The flavonoids may be excreted in the 

urine or bile. Colonic bacteria hydrolyze the flavonoid conjugates after biliary excretion, 

which results in reabsorption of the flavonoid aglucons and enterohepatic recirculation (6,7). 
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The colonic bacteria are also able to further degrade the aglucons into smaller phenolic 

compounds (8). 

Determination of the metabolism and bioavailability of flavonoids is crucial in the 

assessment of flavonoid health effects. Additionally, investigation of which flavonoids are 

best absorbed intact, is important. The microbial population of the human gut plays an 

important role in the metabolism and bioavailability of isoflavones (9) and our lab has 

extensively investigated this phenomenon. We have developed m Wfro human fecal 

fermentation systems that allow us to simulate the gut environment to determine the 

microbial degradation rate (9), identify microbial isoflavone metabolites and predict human 

bioavailability (9-12). Zheng et al (10,11) has shown that slow m Wfro daidzein and genistein 

microbial degradation rates corresponded to greater daidzein and genistein bioavailability in 

human subjects, measured by the average amount of isoflavones recovered in urine as a 

percentage of ingested dose. Xu et al, (9) has shown that the rate of isoflavone microbial 

degradation m vzfro, depended on the chemical structure of isoflavones. Genistein, which 

possesses a hydroxyl group, was degraded significantly faster than daidzein, which does not 

possess this structural feature (9). This suggests that isoflavone chemical structure may be a 

determinant of human bioavailability. 

Recently we have shown that the chemical structure and substitution pattern of other 

flavonoids, flavones, flavanones and flavonols, influenced their degradation rate (Simons et 

al, in press). In the present study, we investigate how the chemical structure of flavonoids 

determine their overall bioavailability m Wvo. 

Materials and Methods 

Subjects 
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Thirty three subjects (20 male and 13 female) were recruited from Iowa State 

University for the m Wfro flavonoid degradation study. The subjects' ages ranged from 18 to 

37 y (mean age = 25.6 ± 4.4 y) with a body mass index (BMI) of 18.1 to 46.1 kg/m% (mean 

BMI = 23.7 ± 4.9 kg/nf) respectively. The ethnicities of the subjects included 15 Caucasians, 

7 Asian-Indians, 7 Chinese, 3 African Americans and 1 African. 

Ten (5 male and 5 female) of the 33 subjects were selected from Iowa State 

University to participate in the human bioavailability studies based on a moderate daidzein 

degradation phenotype. Characteristics of these subjects were age of 18 - 30 y (mean age = 

25.0 ± 4.0) and BMI of 18.1 - 29.1 kg/m% (mean BMI = 22.6 ± 3.3). The ethnicities included 

3 Caucasian, 3 Chinese, 2 Asian-Indians and 2 African Americans (Table 1). All subjects 

were healthy and not taking any medication. Approval of the study design was obtained from 

the Iowa State University Human Subjects Research Committee in 2004. The subjects 

followed an isoflavone-, flavonol- and flavonone-free diet for 1 week before their respective 

feedings. All subjects were given oral and written instructions on foods and beverages not to 

consume during each washout period. 

Reagents and Chemicals 

Apigenin, naringenin, kaempferol, luteolin, quercetin, flavone, chrysin, 7,4'-

dihydroxyflavone, 6,4'-dihydroxyflavone, 5,4'-dihydroxyflavone, 5,3'-dihydroxyflavone 

were from Indofine Chemical Co., Inc (Hillsborough, NJ). Daidzein and 2,4,4'-

trihydroxydeoxybenzoin (THB) were synthesized using the method of Song et al, (12). 

Genistein was synthesized according to modification of Chang et al (13). HPLC grade 

acetonitrile, methanol, acetic acid, dimethyl sulfoxide (DMSO) and all other chemicals were 
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from Fisher Scientific (Fairlawn, NJ). Milli-Q system (Millipore Co., Bedford, MA) HPLC 

grade water was used to prepare all solutions. 

Flavonoid Degradation Study Design 

A stock solution of flavonoids was prepared by dissolving the flavonoids together in 

100% DMSO. Brain-heart infusion (BHI) broth media (Difco Laboratories, Detroit, MI) was 

prepared according to Zheng et al, (14). One and a half grams of freshly voided feces and 25 

mL BHI were transferred to incubation test tubes (Fisher Scientific, Fairlawn, NJ). The final 

concentration of all flavonoids was 100 ^mol/L. The fermentations were performed in 

duplicate. The incubation test tubes were saturated with CO,, sealed with rubber stoppers 

and autoclave tape, then vortexed for 5 s. One mL was taken anaerobically from each test 

tube immediately for time 0 and frozen on dry ice. The tubes were placed in a 37°C 

incubator. One mL aliquots were sampled from the incubation test tubes at 3, 6, 9, 12 and 24 

h and frozen. Negative controls consisted of the fecal suspension without flavonoids. 

Microbial degradation by the fecal suspension was confirmed by positive controls, which 

consisted of BHI media and flavonoids without the fecal suspension. 

Flavonoid Bioavailability Study Design 

The genistein, naringenin and quercetin bioavailability studies were performed on 

three separate days with a 2 week washout period in between each feeding. Genistein, 

naringenin and quercetin were fed in the form of soymilk, grapefruit juice and sautéed red 

onions, respectively, purchased from local grocery stores. The ingested amount of soymilk 

was 2 cups which provided 28 mg genistein, 16 mg daidzein and 3 mg glycitein. The 

ingested amount of grapefruit juice was 2 cups, which provided 422 mg naringenin and 8 mg 

hesperetin. One hundred and eighty live grams of sautéed onions were fed in the form of a 3 
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egg onion omelete, which provided 115 mg quercetin. The subjects consumed each flavonoid 

source along with a capsule containing 170 mg of non-toxic carmine red dye within 10 

minutes for breakfast on the morning of the study. Other breakfast items were provided that 

did not contain the flavonoid of interest such as toast, bagels, cereal, milk, eggs and cheese. 

Baseline, urine, blood and fecal samples were collected before each flavonoid feeding. All 

urine was collected for 24 h into plastic containers in 3 fractions, 0 - 6, 6 - 12 and 12 - 24 h. 

Blood samples (10 mL) were collected into vacuum tubes containing EDTA at 2,4, 6, 12 and 

24 h after consumption of the test meal. Blood samples were collected 1, 3, 5, 12 and 24 h 

after the quercetin feeding. All feces were collected until the carmine red dye was excreted. 

Urine and fecal samples were frozen at -20°C until analysis. Blood samples were centrifuged 

at 3000 g for 25 min at 4°C within 1 h of collection. The plasma was separated and stored at -

80°C until analysis. The subjects remained at the study site until the collection of the 6 hr 

blood sample, after which they were allowed to leave and come back for collection of the 12 

and 24 h blood samples. 

Analytical Methods 

Flavonoid analysis in foods 

Isoflavones in soymilk were extracted according to the method of Murphy et al (15). 

One gram of freeze dried and ground grapefruit juice was extracted in 12 mL of 1M HC1 in a 

125 mL screw top Erlenmeyer flask for 2 h at 98°C with stirring. The solution was cooled, 

and 18 mL acetonitrile added to the solution and stirred for 5 minutes. One mL of this 

solution was filtered with a 0.45 pim PTFE filter (Alltech Associates, Deerfield, IL) into an 

HPLC vial. Red onions were chopped and slightly sautded in vegetable oil, before being 
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cooked in a 3-egg omelete. Portions of the omelete were freeze dried and extracted according 

to the method described above for grapefruit juice. 

Urine analysis 

Urine samples were pooled in 0-6, 6-12 and 12-24 h increments for each subject. Five 

mL samples were incubated with 5 mL 0.2M sodium acetate buffer at pH = 5.5 and 50 ^L p-

glucuronidase/sulfatase (H? type) for 18 h in a 37°C shaking water bath. Ten mL of 10 mM 

sodium phosphate buffer at pH = 7.0, was added to the incubation solution and mixed well. 

The solution was applied to a 20 mL Extralut QE column (EM Sciences) and the column was 

washed twice with 18 mL ethyl acetate. The ethyl acetate collections were collected, pooled 

and dried on a rotary evaporator at 25°C. The residue was dissolved in 9.8 mL 20% ethanol 

in water and 200 uL IN HC1. Five mL of this mixture was loaded onto a preactivated SepPak 

C]g cartridge and washed twice with 2 mL MQ water. The flavonoids were eluted with 2 mL 

80% methanol in water and filtered through a 0.45 pm PTFE filter into an HPLC vial. 

Plasma analysis 

One mL of plasma was incubated with 1 mL 0.2 M sodium acetate at pH 5.5 and 50 

|iL p-glucuronidase/sulfatase H2 type for 20 h at 37°C on a shaking water bath. One mL of a 

10 mM sodium phosphate buffer at pH 7.0 was added to the incubation solution and mixed. 

The solution was added to a 5 mL Extralut SE column and the flavonoids eluted twice with 

ethyl acetate twice into a 20 mL test tube. The solvent was evaporated under Nz, the dried 

residue dissolved in 200 |iL 80% methanol then filtered with a 0.45 p,m PTFE filter into an 

HPLC vial. 

HPLC analysis 
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A Beckman-Coulter HPLC system was used for HPLC analysis consisting of a 

System Gold 126 solvent module, System Gold 508 autosampler and a System Gold 168 

photo-diode array detector. Forty |J.L of sample was injected onto a reversed-phase, 5 p.m, 

Ci8 AM 303 column (250 x 4.6 mm) (YMC Co. Ltd. Wilmington, NC). The mobile phase 

consisted of 0.1% glacial acetic acid in water (A) and 0.1% glacial acetic acid in acetonitrile 

(B). Solvent B increased from 30 to 50% in 10 minutes, increased to 100% in 7 minutes and 

held for 1 minute. The gradient was recycled back to 30% in 2 min for the next run. The 

flow rate was 1 mL/min. The wavelengths used for the preparation of standard curves, 

detection and quantification of flavonoid peaks were 254 nm for isoflavones, flavonols and 

flavones, and 292 nm for flavanones. Integration of peak area responses and evaluation of 

ultraviolet spectra was carried out using 32 Karat™ software (Beckman Coulter Inc., 

Fullerton, CA). 

Data Analysis 

The ratio of peak area of a flavonoid to THB (0.1 pmol/L) versus the flavonoid 

concentration was used as an internal standard curve to estimate the concentration of 

flavonoids in the wz Wfro fecal fermentations. The rate of disappearance of flavonoids in fecal 

fermentation mixtures was estimated by plotting In (% remaining flavonoid) versus time. 

The negative slope of this line was the apparent first order degradation rate constant. 

Flavonoid degradation phenotypes were identified using cluster analysis (16). 

Gut transit time (GTT) was determined by the time it took for the red dye to appear in 

the feces after ingestion of the carmine red dye capsules. GTT estimates were averaged over 

the 3 flavonoid feedings. The amount of flavonoids in urine and plasma, were calculated 

directly from external standard curves constructed in these matrices, extracted in the same 
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manner as the experimental samples. The flavonoid standard curves were obtained by 

plotting flavonoid peak area versus flavonoid concentration. Recovery ranged from 60-90 

% for flavonoids in plasma and urine. Pharmacokinetic parameters were determined using a 

one compartment linear model. Bioavailability was calculated as average total urinary 

flavonoid excretion in 24 h, as a percentage of ingested dose. AUCo-,24h was calculated using 

the linear trapezoidal rule (17). The peak plasma concentration (C^ax) and the time to reach it 

(Tmax) were taken directly from the data. The elimination half-life (T1/2) was calculated from 

the equation T1/2 = In 2/&. 

Statistical evaluation of all experimental results was performed using the SAS system 

(version 8.1, SAS Institute., Cary, NC). Differences in flavonoid bioavailability, normalized 

AUCs, overall and individual degradation rates of flavonoids and daidzein degradation 

phenotypes were estimated using 1-way ANOVA using general linear models. All analyses 

were performed in duplicate and all data are reported as mean ± S DM. The statistical 

significance of all analyses was set at a = 0.05. 

Results 

Wfro flavonoid degradation 

Degradation rate differences of flavonoids were determined for 16 flavonoids, 

genistein, apigenin, naringenin, kaempferol, luteolin, quercetin, myricetin, hesperetin, 

chrysin, flavone, daidzein, glycitein, 5,4'-dihydroxyflavone, 6,4'-dihydroxyflavone, 7,4'-

dihydroxyflavone, 5,3 '-dihydroxyflavone. Flavonoids with 5, 7 and 4'- hydroxyl groups, 

genistein, naringenin, apigenin, kaempferol, quercetin and luteolin, rapidly disappeared from 

the fermentation mixtures, with an average k = 0.46 ± 0.10 h~i (p<0.0001) (figure 2). 

However, myricetin (3,5,7,3%4',5'-hexahydroxyflavone), which possesses hydroxyl groups 



www.manaraa.com

144 

in the 5, 7 and 4'- position, did not rapidly disappear from the fermentation mixtures with an 

average k = 0.04 ± 0.03 If'. The methoxylated flavonoids, hesperetin and glycitein, rapidly 

disappeared with an average k = 0.24 ± 0.21 h"\ All other flavonoids that were lacking any 

of the 5, 7 and 4'- hydroxyl groups were slowly degraded with an average k = 0.07 ± 0.02 h^ 

(figure 2). 

Isoflavone bioavailability 

Each subject ingested 2 cups of soymilk, which contained 103.6 nmol genistein and 

61.8 |imol daidzein (Table 2). There was great interindividual variation for each 

pharmacokinetic parameter measured (area under curve (AUG), C^ax, Tmax, T,/2, amount 

excreted). Plasma concentrations peaked about 5 h after soymilk dosing for both genistein 

and daidzein with half lives of 2.1 and 1.1 h respectively. Peak concentrations were 0.7 

p,mol/L for genistein and 1.0 p,mol/L for daidzein. Average bioavailability of genistein and 

dadizein, defined as amount of flavonoid excreted in urine as a percentage of ingested dose, 

was 7.2 and 42.6 % respectively (Table 2). 

Wfro degradation rates of the 10 subjects clustered into 3 significantly different 

groups (p<0.0001), called high genistein degraders (average k = 1.28 ± 0.45 h"\ n=3), 

moderate genistein degraders (average k = 0.35 ± 0.01 h"\ n=3) and low genistein degraders 

(k = 0.11 ± 0.07 h~\ n=4, figure 3A). Urinary genistein excretion in low genistein degraders 

was 11.5 ± 8.0 % and was significantly higher than urinary genistein excretion in moderate 

(4.9 ± 2.7 %, p = 0.027) and high genistein degraders (3.6 ± 1.9 %, p = 0.007, figure 3B). 

There was no difference between AUC values for high, moderate and low genistein 

degraders (p > 0.05, data not shown). 

Flavanone bioavailability 
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Nine subjects ingested 2 cups of grapefruit juice, containing 1549.9 p,mol naringenin 

and 25.5 pimol hesperetin (table 2). One female subject dropped out of the study. Naringenin 

and hesperetin plasma concentrations peaked at 5.1 and 12 h, respectively, with peak plasma 

concentrations of 0.3 and 0.05 [imol/L, respectively. Half lives were 5.7 h for naringenin and 

3.6 h for hesperetin. The average bioavailability of naringenin was 3.2 %. The average 

bioavailability of hesperetin across the nine subjects was 4.1 %, but hesperetin was not 

recovered in the plasma or urine of the 4 females ingesting the grapefruit juice. Therefore, 

the bioavailability of hesperetin in males was 7.3 % (table 2). 

/n Wfro naringenin degradation rates clustered into 3 significant groups which we 

called high (average k = 0.63 ± 0.20 h"\ n=2), moderate (average k = 0.20 ± 0.01 h~\ n=3) 

and low naringenin (average k = 0.05 ± 0.03 h""\ n=4) degraders and were similar to the 

phenotypic groups for genistein (data not shown). There was no difference between urinary 

naringenin excretion or AUC values in these 3 phenotypic groups (p > 0.05). 

Flavonol Bioavailability 

Each subject ingested a 3 egg omelete with 185 g sautéed red onions, containing 

380.5 |imol quercetin (table 2). Plasma quercetin concentrations peaked at 1.5 h with a half 

life of around 9 h. Average peak plasma concentrations was 0.8 pmol/L with an AUC value 

of 6.1 |imol*h/L. Bioavailablity of quercetin was 5.6 % (table 2). 

Overall flavonoid-bioavailability comparison 

When all flavonoids were compared on a per p,mol basis, AUC values were not 

significantly different for genistein and daidzein (p = 0.49, figure 4A). The average AUC for 

genistein and daidzein was significantly higher than naringenin, quercetin and hesperetin (p = 

0.001). Naringenin had the smallest AUC value, which was significantly lower than all of the 
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other flavonoids tested (pxO.OOOl, figure 4A). Overall bioavailability was not significantly 

different between quercetin, naringenin, hesperetin and genistein (5.8 ± 1.9 %, p > 0.05). The 

bioavailability of daidzein was significantly higher than the other flavonoids (p < 0.0001). 

Discussion 

Influence of flavonoid chemical structure on human gut microbial degradation in 

vi'fro was illustrated in figure 2. The flavonoids that were most rapidly degraded in the fecal 

fermentation systems from 33 subjects included the isoflavone, genistein, the flavones 

apigenin and luteolin, the flavonols quercetin and kaempferol and the flavanone naringenin. 

All of these flavonoids possessed hydroxyl groups on the 5, 7 and 4' positions of the 

flavonoid backbone structure. These results support previous data in our lab which have 

shown that 5,7,4 ' -trihydroxylflavonoids were most rapidly degraded by the fecal microflora 

from 11 human subjects compared to flavonoids without these structural features (Simons et 

al, submitted). However, myricetin, which also possesses hydroxyl groups in the 5, 7 and 4' 

positions was not degraded rapidly. A possible reason for this observation is because the 

rapidly degraded 5,7,4 ' -trihydroxylflavonoids in this study possess between 3 and 5 hydroxyl 

groups and are similar in their hydrophobicity, when analyzed by reversed phase HPLC (data 

not shown). Myricetin possesses a 6 hydroxyl group on the flavonoid backbone structure and 

was much more hydrophilic compared to the other 5,7,4'-trihydroxylflavonoids. The 6 

hydroxyl groups on the myricetin structure may hinder the bacterial enzymatic reaction that 

is necessary to degrade these flavonoid compounds. It is possible that the more hydroxyl 

groups a flavonoid has, the more likely it is resist degradation by the human gut microflora. 

Other flavonoids that were rapidly degraded were the methoxylated isoflavone and 

flavanone, glycitein and hesperetin, respectively. These flavonoids do not possess a 5,7,4'-
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trihydroxylflavonoid structure and do not support our previous findings in that only 5,7,4'-

trihydroxylflavonoids were rapidly degraded. An explanation for this is that these 

methoxylated flavonoids are rapidly demethylated in vifro before further microbial 

degradation and our calculated degradation rates are based on this demethylation reaction, 

instead of degradation of the demethylation product. We have tested this hypothesis in vifro 

and have shown that hesperetin was rapidly demethylated to eriodictyol, which possesses a 

5,7,4'-trihydroxylflavonoid structure. Eriodictyol was then rapidly degraded, which supports 

our findings that 5,7,4 '-trihydroxylflavonoids are rapidly degraded (data not shown). 

Supporting data has shown that hesperetin was demethylated in an m vifro pig caecum model 

to eriodictyol, then further degraded to 3-(3-hydroxyphenyl)-propionic acid and 

phloroglucinol (18). 

Hesperetin was degraded significantly faster than glycitein, which may be as a result 

of a more rapid demethylation reaction from the 4' position in hesperetin compared to the 6 

position in glycitein. Hur et al, 2000 has reported that the methoxylated isoflavones, 

formononetin, biochanin A and glycitein were demethylated regardless of the position of the 

methoxyl group but they did not report the actual demethylation rates. However, they 

reported that the demethylation rate of bioachanin A was faster than that of formononetin and 

speculated that the hydroxyl group in the 5 position of biochanin A was responsible for this 

faster reaction (19). Since hesperetin possesses a 5-hydroxyl group and glycitein does not, 

the explanation in Hur et al, 2000 may be valid. 

We observed a significant amount of inderindividual variation in the degradation 

rates for all of the flavonoids (Figure 2). For all of the flavonoids, except hesperetin and 

quercetin, cluster analysis revealed 3 significant flavonoid phenotype groupings (p < 0.0001), 
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which we named high, moderate and low flavonoid degraders. Although the interindividual 

variation in the quercetin and hesperetin degradation rates was high, there were no clear 

significant phenotype groupings after cluster analysis (data not shown). Low flavonoid 

degraders may experience higher bioavailability of flavonoids compared to high flavonoid 

degraders because the flavonoids have more time to be absorbed from the small intestine 

before they are degraded in low flavonoid degraders. Zheng et al, 2004 has shown that 

women with a low daidzein degradation phenotype experienced a greater 24 h urinary 

daidzein excretion compared to women with high daidzein degradation phenotypes (11). 

Additionally, since 5,7,4'-trihydroxyflavonoids are rapidly degraded Wfro, we 

hypothesized that that these compounds are not very bioavailable in humans because these 

flavonoids have less time to be absorbed before they are degraded by the intestinal bacteria. 

On the other hand, flavonoids lacking any one of the 5, 7 and 4' hydroxyl groups would be 

more bioavailable because they are degraded at a slower rate and have more time to be 

absorbed compared to 5,7,4'-trihydroxyflavonoids. Zhang et al, 1999 has shown that subjects 

with moderate isoflavone degradation phenotypes experienced a significantly lower 

bioavailbility of genistein, which is a 5,7,4 ' -trihydroxyl-isoflavonoid, compared to daidzein 

(14). To test these hypotheses, we conducted 3 human bioavailability studies to compare the 

bioavailability of the rapidly m v;fro degraded flavonoids, genistein, naringenin, quercetin 

and hesperetin, to a less rapidly m Wfro degraded flavonoid daidzein in humans. 

In an attempt to minimize interindividual variation, 5 men and 5 women were chosen 

from the initial 33 subjects that participated in the m vzfro fecal fermentation degradation 

study based on a moderate daidzein degradation phenotype. The average 24 h urinary 

excretion, and thus, overall bioavailability of daidzein was significantly higher than genistein 
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with average bioavailabilities of 43 and 7 %, respectively, (p < 0.0001) even though the 

ingested dose of genistein was almost twice as high as daidzein (104 vs. 62 |imol 

respectively). These data are in agreement with Xu et al 1994 and King et al, 1998, who fed 

similar doses of genistein and daidzein in soy foods to human subjects (20, 21). Their doses 

of around 97 pmol daidzein and 71 p,mol genistein resulted in an average daidzein 

bioavailability of 19.8 %, which was significantly higher than the average genistein 

bioavailability of 5.3 % (20). The average daidzein bioavailabilty of 43 % reported in our 

data is significantly higher than the Xu et al, 1994 data, but this could be due to differences in 

the isoflavone degradation phenotypes of the subjects, which may affect the overall 

isoflavone bioavailability. Peak plasma concentrations were similar in our study and the Xu 

et al, 1994 study in that they did not exceed 1 pmol/L (20). The AUC of daidzein appeared to 

be greater than that of genistein when normalized on a per umol basis, but there was no 

significant difference in the AUC values of genistein and daidzein because of the large 

variation at each time point. The higher bioavailability of daidzein compared to genistein was 

expected because daidzein was not a 5,7,4 ' -trihydroxyisoflavone, and was not degraded 

rapidly m Wfro. 

The 10 subjects that ingested the soymilk were divided into 3 genistein degradation 

phenotypes based on their m vifro genistein degradation rates. Low genistein degraders 

exhibited a higher genistein bioavailability compared to high genistein degraders (figure 3). 

This supports our hypothesis that low flavonoid degraders exhibit a higher flavonoid 

bioavailability than high flavonoid degraders, at least in genistein. Zheng et al, 2003 has 

reported that Asian women with low genistein degrader phenotypes experienced a higher 

genistein bioavailability compared to Asian women with high genistein degrader phenotypes 
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(10). This phenomenon was not observed for daidzein in the current study because all 

subjects were moderate daidzein degraders. 

Naringenin bioavailability of around 3 %, and ranged from 1 - 7 %, which was 

surprisingly low, and significantly lower than hesperetin, with an average bioavailability of 7 

% with a range of 4 - 10 %, given the high dose of 1550 (imol naringenin ingested in the 

grapefruit juice. The low naringenin bioavailability is in agreement with data from Ishii et al, 

2000 and Ameer et al, 1996, who reported a naringenin bioavailability of 4 - 5 % when a 

single oral dose of 1837 [imol pure naringin was administered to human subjects (22, 23). 

Average naringenin bioavailability from grapefruit juice was determined to be 7 %, with an 

oral dose of 1194 ^mol in 4 subjects (24). A wide range of 5 - 57 % naringenin 

bioavailability was reported in 6 subjects ingesting 26 (imol naringin per kg body weight 

(25). The range of naringenin reported in our studies was much lower than this and may 

suggest that our attempts at minimizing indeiindividual variation in our subjects was 

successful, by selecting subjects based on m Wfro moderate daidzein degradation phenotypes. 

Most of the available research on hesperetin bioavailability has previously been 

determined from ingestion of orange juice, because hesperetin is the major flavanone in 

orange juice, whereas naringenin predominates in grapefruit juice. Studies have shown that 

hesperetin bioavailability ranged from 3 - 6 % (23 - 25), which is in agreement with our 

calculated average hesperetin bioavailability of 7 %, with a range of 4 - 10 %. 

We observed significant sex differences in hesperetin bioavailability in that 

hesperetin was not recovered in the urine or plasma of females. The hesperetin bioavailability 

reported was thus based on bioavailability in the 5 males that ingested the grapefruit juice. 

Perhaps all of the hesperetin was excreted unchanged in the feces and is being investigated. 



www.manaraa.com

151 

The pharmacokinetics of quercetin was slightly different from the other flavonoids, in 

that the average time to get to peak plasma concentrations was 1.5 h, and was more rapid 

than the other flavonoids with Tmax values of 4 - 5 h. The average elimination half life was 9 

hours, and ranged from 1 - 20 h compared to the half lives of the other flavonoids, which 

ranged from 1 - 6 h. Average quercetin bioavailability was determined to be about 6 % with 

a range from 1 - 10 %. These data support data from Graefe et al, 2001, who reported 

average quercetin bioavailability of 6% with an average Tmax of 0.68 h, and average half life 

of 10.9 h after feeding a dose of 331 |imol quercetin in onions to 12 human subjects (26). 

This dose is comparable to the dose of 381 pmol quercetin that we fed in onions. Aziz et al, 

1998 has reported a lower average quercetin bioavailability of 1 % after a dose of 300 g of 

lightly fried yellow onions in 5 subjects compared to our average bioavailability of 6 % (27). 

The reason for the difference in these bioavailability values is not clear, but may be due to 

the food matrix. In our study, we fed red onions in the form of an omelette, while the Aziz et 

al, 1998 study fed lightly fried onions as is (27). It is possible that unknown factors within 

the omelette facilitated the absorption of quercetin which resulted in a higher urinary 

recovery and bioavailability. 

Overall, when all of the flavonoids were compared on a per umol basis, the AUC 

values of genistein and daidzein were significantly higher than quercetin, naringenin and 

hesperetin (figure 4A). Based on appearance of figure 4A, we expected daidzein to be 

significantly higher than genistein but the standard deviation was high at each time point, 

which prevented this statistical significance. It was evident from figure 4A that the overall 

AUC was higher for isoflavones, than for the other flavonoids. Overall bioavailability was 

not different for genistein, naringenin, quercetin and hesperetin, but they were significantly 
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lower than the bioavailability of daidzein (figure 4B). From this graph, it is evident that we 

have supported our hypothesis, in that rapid microbial degradion of flavonoids vifro, such 

as those with a 5,7,4'-trihydroxylflavonoid structure (genistein, naringenin and quercetin), 

and hesperetin, which was rapidly demethylated into a 5,7,4'-trihydroxylflavonoid, are less 

bioavailable than flavonoids that are more slowly degraded in vifro, such as daidzein, which 

does not possess a 5,7,4'-trihydroxylflavonoid structure. 

These results give insight into why flavonoids with minor differences in their 

chemical structure, may have such vast differences in certain biological effects such as 

estrogenicity and antioxidant activity. Because different flavonoid chemical structures alter 

their intestinal microbial degradation and thus overall human bioavailability, the biological 

activity of flavonoids may be altered depending on how much of the intact flavonoid gets 

absorbed across the intestinal wall to exert its biological effect. More data needs to be done 

in this are to investigate the relationship of flavonoid chemical structure to human 

bioavailability in other flavonoid subgroups. 
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Table 1. Characteristics of subjects in the m v/vo flavonoid bioavailability study 

Subject 
ID Sex BMI 

(kg/m') 
Age 
(y) GTT (h) degradation 

rate k (h"i) Ethnicity 

114 F 23.2 22 39.83±9.3 0.054 Caucasian 
118 F 18.1 24 53.22 0.120 Asian 
119 F 22.7 30 67.48±19.8 0.047 Asian 
125 F 29.1 24 50.20 0.037 Af-American 
127 F 22.5 26 104.25 0.046 Af-American 
206 M 26.3 24 38.67±6.1 0.017 Caucasian 
212 M 20.7 18 23.25±15.9 0.036 As-Indian 
217 M 20.7 30 23.47±11.4 0.064 Asian 
224 M 23.7 25 75.20 0.030 Caucasian 
229 M 19.0 27 65.02±9.2 0.074 As-Indian 
Male 22.1 ±2.9 25±4 45.1 ±23.9 0.044 

Female 23.1 ±3.9 25±3 63.0±25.1 0.061 

Overall 22.6±3.3 25±4 54.1 ±25.0 0.053±0.029 
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Table 2. Pharmacokinetic parameters of the soy isoflavones genistein and daidzein 

Isoflavone 

Ingested 
Dose AUC Cmax Amount 

excreted Bioavailability 
Isoflavone 

//mo/ //mo/ A/1 T]% A //mo/ % 

Genistein 103.6 9.2±4.8 0.7±03 4.863.0 2.161.6 7.965.3 7.264.8 

Daidzein 61.8 12.8±3.7 1.060.4 5.360.9 1.160.8 26.8610.1 42.6616.0 

Naringenin 1549.5 3.W=1.7 0.360.2 5.161.6 5.765.9 50.0627.7 3:261.7 

Hesperetin 25.5 0.7±0.9 0.0560.09 12.065.5 3.664.9 0.960.4 7.363.2' 

Quercetin 380.5 6.1±5.9 0.860.6 1.561.3 9.1 ±8.9 21.164.4 5.663.7 

"bioavailability in males only 
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Flavonoid structure and numbering system 
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Figure 1. Structure of flavonoids analyzed 
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MYR 74F 64F LUT QUE API NAM KAE CHR 54F 53F FLA DAI GLY GEN HES 

Flavonoids 

Figure 2. Average m v;fro degradation rates for flavonoids. MYR: myricetin, 74F: 
7,4'-dihydroxyflavone, 64F: 6,4'-dihydroxyflavone, LUT: luteolin, QUE: quercetin, 
API: apigenin, NAR: naringenin, KAE: kaempferol, CHR: chrysin, 54F: 5,4'-
dihydroxyflavone, 53F: 5,3 ' -dihydroxyflavone, FLA: flavone, DAI: daidzein, GLY: 
glycitein, GEN: genistein, HES: hesperetin. Error bars represent standard deviation of 
the mean. Bars with different letters are significantly different. 
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Figure 3. Genistein degradation phenotypes and correlation to urinary exretion. A: 
Cluster analysis of genistein degradation rates. B: Amount of genistein excreted in 
urine after 24 h in subjects with high, moderate and low genistein degrader 
phenotypes 
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Figure 4. A: Overall AUC for flavonoids compared on a per umol basis. B: 
Bioavailability of flavonoids expressed as the amount of flavonoid excreted in urine 
after 24 h as a percentage of ingested dose. 
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GENERAL CONCLUSIONS 

I have hypothesized that the chemical structure of flavonoids influences their gut 

microbial degradation, and is therefore a strong determinant of bioavailability. The first 

study, 'Metabolism of glycitein by human gut microflora', suggested that the chemical 

structure of soy isoflavones did influence the rate of degradation, with genistein being the 

most rapidly degraded isoflavone. Since isoflavones are only one subclass of flavonoids, the 

second paper, 'Human gut microbial degradation of flavonoids: structure-function 

relationships', examines the degradation of a wide variety of flavonoid subclasses including 

flavones, flavonols, flavanones and isoflavones. This paper supported the first paper, in that 

the chemical structure of flavonoids, not only isoflavones, influence gut microbial 

degradation. The flavonoids that tended to be the most rapidly degraded possessed hydroxyl 

groups at the 5, 7 and 4' positions. Why this is the case, is not clear but it may have to do 

with the similar hydrophobicities of these flavonoids with these structural features. 

Flavonoids that are extensively metabolized in the human gut have reduced 

bioavailabilities compared to flavonoids that are not extensively metabolized because of 

limited absorption of the intact flavonoid. This holds true for other pharmacological drugs. 

This was observed in the human bioavailability studies conducted in the 3"* paper. Here we 

see that the overall hypothesis was upheld, in that the flavonoid chemical structure did 

determine human bioavailability. Additionally, we were able to conclude that the m Wfro 

fecal fermentation systems in my studies are excellent models for simulating human 

intestinal microbial metabolism and a good predictor of bioavailability. 

Further research should be conducted to determine why 5,7,4' -trihydroxylflavonoids 

were preferentially degraded over other flavonoids. First, this would require knowledge of 
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the specific bacteria in the gut that are responsible for degrading these compounds. With this 

knowledge, many more detailed studies may be conducted, such as identifying and 

characterizing the enzymes responsible for flavonoid degradation. Maybe there are certain 

active sites that preferentially bind to 5,7,4'-trihydroxyflavonoids. I also think that in vzfro 

fermentation and bioavailability studies should be conducted with bioactive polyphenols and 

compounds in other herbs and dietary supplements that have not been well studied in human 

clinical trials and approved for use by the FDA. 
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